
PROJECT

DESIGN, IMPLEMENTATION, AND OPERATION
OF IPV6-ONLY IAAS SYSTEM

WITH IPV4-IPV6 TRANSLATOR
FOR TRANSITION TOWARD

THE FUTURE INTERNET DATACENTER

Keiichi SHIMA1(Presenter)
Wataru ISHIDA2

Yuji SEKIYA2

1IIJ Innovation Institute Inc.
2The University of Tokyo

PROJECT

1



PROJECT

BACKGROUND

• Increasing computing power and wide spreading virtualization 
technology

• Demand for more flexible configuration of network service 
backend system and cloud computing technology

• IPv4 address depletion, IPv6 deployment, and operation cost 
of infrastructure

2



PROJECT

CLOUD SERVICES FROM 
DIFFERENT VIEWPOINTS

Users

Service providers

Infrastructure providers
IaaS

SaaS

PaaS

Service providers

RequireProvide

Provide Require

RequireProvide

3



PROJECT

CLOUD SERVICES FROM 
DIFFERENT VIEWPOINTS

Users

Users / Service providers

Infrastructure providers
IaaS

SaaS

PaaS

Users / Service providers

RequireProvide

Provide Require

RequireProvide

Our target

4



PROJECT

REQUIREMENTS FOR FUTURE 
INTERNET DATACENTERS

• Datacenter interconnection for scaling out infrastructure or 
service beyond geographical limitation

• Transparent resource availability over geographically 
distributed datacenters

• Migration to IPv6 with less operation cost without losing IPv4 
client backend compatibility

5



PROJECT

REQUIREMENTS FOR FUTURE 
INTERNET DATACENTERS

• Datacenter interconnection for scaling out infrastructure or 
service beyond geographical limitation

• Transparent resource availability over geographically 
distributed datacenters

• Migration to IPv6 with less operation cost without losing IPv4 
client backend compatibility

Our focus in this paper

6



PROJECT

BASIC CONCEPT

IPv4/IPv6
Internet

IPv4-IPv6
translator nodes

Frontend
nodes

Backend
nodes

Proposed
IaaS
system

IP
v4
/IP
v6

IP
v6
-o
nly

Figure 1: The overview of the proposed IaaS system

test cost can also be reduced that will benefit service
providers.

In this proposed system, we assume an IPv4 ad-
dress and an IPv6 address are mapped one to one. Be-
cause the proposed system discussed in this paper is
for IaaS providers providing server resources to their
users, who are PaaS providers, SaaS providers, and/or
ASPs, we cannot design the system to share one IPv4
address by several IPv6 server nodes. We also don’t
consider implementing this requirement using appli-
cation level proxy solution, since service providers
have different requirements for their services, we can-
not limit the communication layer function to appli-
cation layers. This may be a problem considering
that the IPv4 address is scarce resource. However, we
need to use IPv4 address anyway if we want to sup-
port IPv4 clients. And also we need to map addresses
one to one if we want to provide services without any
modification on the client side. Our best effort to han-
dle this issue is that we do not allocate IPv4 addresses
to backend nodes to avoid non-necessary IPv4 use.

The version of an IP protocol used in the backend
network can be either IPv4 or IPv6. In the implemen-
tation shown in this paper, we use IPv6 as an inter-
nal protocol for the backend network considering the
trend of IPv6 transition of the whole Internet.

Figure 1 depicts the overview of the proposed sys-
tem. We said that the frontend nodes provide dual-
stack services to the client before, however precisely
speaking, these frontend nodes do not have any IPv4
addresses. The mapping information between IPv4
and IPv6 addresses are registered to each IPv4-IPv6
translator node and shared by all the translator nodes.
Since the mapping is done in the one to one manner,
no translator nodes need to keep session information
of ongoing communication. They can just translate
IP packets one by one. This makes it possible to place
multiple translator nodes easily to scale out the trans-
lation service when the amount of the traffic grows.
This feature also contributes robustness of the trans-

WIDE
backbone

IPv4/IPv6
Internet

IaaS service nodes

Osaka
NOC

Tokyo
NOC

IPv4/IPv6
translator
nodes

Frontend and
backend nodes

Wide area
L2 network

OSPF
routing

Figure 2: The actual network configuration of the proposed
IaaS system implemented and operated in the WIDE project
operation network

lation system. When one of the translator nodes fails,
we can just remove the failed node from the system.
Since there is no shared session information among
translator nodes, the service is kept by the rest of the
translator nodes without any recovery operation.

Figure 2 shows the overview of the actual system
we are operating. The virtual machine resource man-
agement system located at the bottom of the figure is
the WIDE Cloud Controller (WCC) (WIDE project,
2011) developed by the WIDE project. The two net-
work operation centers (NOC) located at Tokyo and
Osaka are connected by a wide area layer 2 network
technology. The layer 2 network is a 10Gbps fiber
line dedicated to the WIDE project network opera-
tion. There are two layer 3 networks in Tokyo and
Osaka NOC whose network address spaces are same.
These two layer 3 networks are connected by the layer
2 link using VLAN technology. The translator nodes
are placed at each location. The routing information
of the IPv4 addresses used to provide IPv4 connec-
tivity to IPv4 clients is managed using the OSPFv3
routing protocol in the WIDE project backbone net-
work. Since all the translator nodes advertise the same
IPv4 address information using the equal cost strat-
egy, incoming traffic is distributed based on the entry
points of the incoming connections. The aggregated
IPv4 routing information is advertised to the Inter-
net using the BGP routing protocol. Any incoming
IPv4 connection requests from the Internet are routed
to the WIDE backbone based on the BGP informa-
tion, routed to one of the translator nodes based on
the OSPFv3 routing information, and finally routed
to the corresponding virtual machine based on the
static mapping table information stored in the trans-
lator nodes. The translation mechanism is described
in section 3.2. Failure of either Osaka or Tokyo NOC
will result in failure of the OSPFv3 routing infor-

• Build infrastructure network 
only with IPv6

• IPv4 compatibility is 
necessary only for frontend 
nodes that interact with 
users

• IPv6-IPv4 translation is 
performed between 
frontend nodes and user 
nodes

7



PROJECT

TRANSLATOR DESIGN

• The basic idea is same as DNS64/NAT64

• The important design choice and limitation is that one IPv4 
and one IPv6 addresses are mapped directly one by one

• For redundancy and scaling out

• Drawback: IPv4 address utilization (but remember that IPv4 
addresses are assigned only to frontend nodes)

8



PROJECT

HOW TRANSLATOR WORKS

Src: ClientIPv4
Dst: ServerIPv4

Src: Pseudo prefix::ClientIPv4
Dst: ServerIPv6

ServerIPv4 <=> ServerIPv6

Mapping table

Refer

IPv4 packet IPv6 packet

IPv4
client

IPv6
server

IPv4 Internet Proposed IaaS system

Translator

Figure 3: IPv4-IPv6 header translation procedure

IPv4
Client

Trans-
lator

IPv6
Server

IPv4
Client

IPv4
Router

IPv4
Server

IPv6
Client

IPv6
Router

IPv6
Server

IPv6
Client

Trans-
lator

IPv4
Server

C1
Translation (4>6)

C2
Translation (6>4)

C3
IPv4 forwarding

C4
IPv6 forwarding

IPv4

IPv6

IPv4 IPv4

IPv6

IPv4

IPv6 IPv6

Figure 5: The four configurations used in performance eval-
uation

and restarted router advertisement at Tokyo node at
around time 90. Finally, all the traffic came back to
go through Tokyo node.

5 Performance Evaluation

The obvious bottleneck of the system is the trans-
lator nodes where all the traffic must go through with
them. This section shows the evaluation result of the
translation software.

5.1 Translation Performance

The performance evaluation is done with the four dif-
ferent configurations shown in figure 5. The configu-
ration 1 and 2 (C1 and C2) are the translation cases us-
ing our translator software. Configuration 2 (C2) and
3 (C3) use normal IPv4 and IPv6 forwarding mecha-

Table 1: Specification of nodes
Client/Server Translator/Router

CPU Core2 Duo
3.16GHz

Xeon L5630
2.13GHz × 2

Memory 4GB 24GB
OS Linux 3.0.0-12-

server
Linux 3.0.0-12-
server

NIC Intel 82573L Intel 82574L

Figure 6: RTT measurement result using the ping program

nisms to compare the translation performance with no
translation cases.

Evaluation is done using two methods, one is the
ping program to measure RTT, and the other is the
iperf program to measure bandwidth. All the results
in this experiment show the average value of 5 mea-
surement tries2. The computer nodes used in this per-
formance test are shown in table 1, and all the tests
were performed locally by directly connecting 3 com-
puters as shown in figure 5.

Figure 6 shows the result of the ping test. The RTT
values were 0.45ms in C1, 0.43ms in C2, 0.36ms in

2We didn’t record standard deviation of these tries, since
the results were stable.

9



PROJECT

IMPLEMENTATION AND 
DEPLOYMENT

IPv4/IPv6
Internet

IPv4-IPv6
translator nodes

Frontend
nodes

Backend
nodes

Proposed
IaaS
system

IP
v4
/IP
v6

IP
v6
-o
nly

Figure 1: The overview of the proposed IaaS system

test cost can also be reduced that will benefit service
providers.

In this proposed system, we assume an IPv4 ad-
dress and an IPv6 address are mapped one to one. Be-
cause the proposed system discussed in this paper is
for IaaS providers providing server resources to their
users, who are PaaS providers, SaaS providers, and/or
ASPs, we cannot design the system to share one IPv4
address by several IPv6 server nodes. We also don’t
consider implementing this requirement using appli-
cation level proxy solution, since service providers
have different requirements for their services, we can-
not limit the communication layer function to appli-
cation layers. This may be a problem considering
that the IPv4 address is scarce resource. However, we
need to use IPv4 address anyway if we want to sup-
port IPv4 clients. And also we need to map addresses
one to one if we want to provide services without any
modification on the client side. Our best effort to han-
dle this issue is that we do not allocate IPv4 addresses
to backend nodes to avoid non-necessary IPv4 use.

The version of an IP protocol used in the backend
network can be either IPv4 or IPv6. In the implemen-
tation shown in this paper, we use IPv6 as an inter-
nal protocol for the backend network considering the
trend of IPv6 transition of the whole Internet.

Figure 1 depicts the overview of the proposed sys-
tem. We said that the frontend nodes provide dual-
stack services to the client before, however precisely
speaking, these frontend nodes do not have any IPv4
addresses. The mapping information between IPv4
and IPv6 addresses are registered to each IPv4-IPv6
translator node and shared by all the translator nodes.
Since the mapping is done in the one to one manner,
no translator nodes need to keep session information
of ongoing communication. They can just translate
IP packets one by one. This makes it possible to place
multiple translator nodes easily to scale out the trans-
lation service when the amount of the traffic grows.
This feature also contributes robustness of the trans-

WIDE
backbone

IPv4/IPv6
Internet

IaaS service nodes

Osaka
NOC

Tokyo
NOC

IPv4/IPv6
translator
nodes

Frontend and
backend nodes

Wide area
L2 network

OSPF
routing

Figure 2: The actual network configuration of the proposed
IaaS system implemented and operated in the WIDE project
operation network

lation system. When one of the translator nodes fails,
we can just remove the failed node from the system.
Since there is no shared session information among
translator nodes, the service is kept by the rest of the
translator nodes without any recovery operation.

Figure 2 shows the overview of the actual system
we are operating. The virtual machine resource man-
agement system located at the bottom of the figure is
the WIDE Cloud Controller (WCC) (WIDE project,
2011) developed by the WIDE project. The two net-
work operation centers (NOC) located at Tokyo and
Osaka are connected by a wide area layer 2 network
technology. The layer 2 network is a 10Gbps fiber
line dedicated to the WIDE project network opera-
tion. There are two layer 3 networks in Tokyo and
Osaka NOC whose network address spaces are same.
These two layer 3 networks are connected by the layer
2 link using VLAN technology. The translator nodes
are placed at each location. The routing information
of the IPv4 addresses used to provide IPv4 connec-
tivity to IPv4 clients is managed using the OSPFv3
routing protocol in the WIDE project backbone net-
work. Since all the translator nodes advertise the same
IPv4 address information using the equal cost strat-
egy, incoming traffic is distributed based on the entry
points of the incoming connections. The aggregated
IPv4 routing information is advertised to the Inter-
net using the BGP routing protocol. Any incoming
IPv4 connection requests from the Internet are routed
to the WIDE backbone based on the BGP informa-
tion, routed to one of the translator nodes based on
the OSPFv3 routing information, and finally routed
to the corresponding virtual machine based on the
static mapping table information stored in the trans-
lator nodes. The translation mechanism is described
in section 3.2. Failure of either Osaka or Tokyo NOC
will result in failure of the OSPFv3 routing infor-

• Frontend nodes and 
backend network, built on 
top of the wide area L2 
network

• Two exit points located at 
Tokyo and Osaka

10



PROJECT

SYSTEM EVALUATION

• Redundancy verification between Tokyo and Osaka

1. Stop radvd on the translator node at Tokyo

2. Stop translator function on the translator node at Tokyo

3. Restart radvd, translator at Tokyo

11



PROJECT

SYSTEM EVALUATION

IPv4/IPv6
Internet

IPv4-IPv6
translator nodes

Frontend
nodes

Backend
nodes

Proposed
IaaS
system

IP
v4
/IP
v6

IP
v6
-o
nly

Figure 1: The overview of the proposed IaaS system

test cost can also be reduced that will benefit service
providers.

In this proposed system, we assume an IPv4 ad-
dress and an IPv6 address are mapped one to one. Be-
cause the proposed system discussed in this paper is
for IaaS providers providing server resources to their
users, who are PaaS providers, SaaS providers, and/or
ASPs, we cannot design the system to share one IPv4
address by several IPv6 server nodes. We also don’t
consider implementing this requirement using appli-
cation level proxy solution, since service providers
have different requirements for their services, we can-
not limit the communication layer function to appli-
cation layers. This may be a problem considering
that the IPv4 address is scarce resource. However, we
need to use IPv4 address anyway if we want to sup-
port IPv4 clients. And also we need to map addresses
one to one if we want to provide services without any
modification on the client side. Our best effort to han-
dle this issue is that we do not allocate IPv4 addresses
to backend nodes to avoid non-necessary IPv4 use.

The version of an IP protocol used in the backend
network can be either IPv4 or IPv6. In the implemen-
tation shown in this paper, we use IPv6 as an inter-
nal protocol for the backend network considering the
trend of IPv6 transition of the whole Internet.

Figure 1 depicts the overview of the proposed sys-
tem. We said that the frontend nodes provide dual-
stack services to the client before, however precisely
speaking, these frontend nodes do not have any IPv4
addresses. The mapping information between IPv4
and IPv6 addresses are registered to each IPv4-IPv6
translator node and shared by all the translator nodes.
Since the mapping is done in the one to one manner,
no translator nodes need to keep session information
of ongoing communication. They can just translate
IP packets one by one. This makes it possible to place
multiple translator nodes easily to scale out the trans-
lation service when the amount of the traffic grows.
This feature also contributes robustness of the trans-

WIDE
backbone

IPv4/IPv6
Internet

IaaS service nodes

Osaka
NOC

Tokyo
NOC

IPv4/IPv6
translator
nodes

Frontend and
backend nodes

Wide area
L2 network

OSPF
routing

Figure 2: The actual network configuration of the proposed
IaaS system implemented and operated in the WIDE project
operation network

lation system. When one of the translator nodes fails,
we can just remove the failed node from the system.
Since there is no shared session information among
translator nodes, the service is kept by the rest of the
translator nodes without any recovery operation.

Figure 2 shows the overview of the actual system
we are operating. The virtual machine resource man-
agement system located at the bottom of the figure is
the WIDE Cloud Controller (WCC) (WIDE project,
2011) developed by the WIDE project. The two net-
work operation centers (NOC) located at Tokyo and
Osaka are connected by a wide area layer 2 network
technology. The layer 2 network is a 10Gbps fiber
line dedicated to the WIDE project network opera-
tion. There are two layer 3 networks in Tokyo and
Osaka NOC whose network address spaces are same.
These two layer 3 networks are connected by the layer
2 link using VLAN technology. The translator nodes
are placed at each location. The routing information
of the IPv4 addresses used to provide IPv4 connec-
tivity to IPv4 clients is managed using the OSPFv3
routing protocol in the WIDE project backbone net-
work. Since all the translator nodes advertise the same
IPv4 address information using the equal cost strat-
egy, incoming traffic is distributed based on the entry
points of the incoming connections. The aggregated
IPv4 routing information is advertised to the Inter-
net using the BGP routing protocol. Any incoming
IPv4 connection requests from the Internet are routed
to the WIDE backbone based on the BGP informa-
tion, routed to one of the translator nodes based on
the OSPFv3 routing information, and finally routed
to the corresponding virtual machine based on the
static mapping table information stored in the trans-
lator nodes. The translation mechanism is described
in section 3.2. Failure of either Osaka or Tokyo NOC
will result in failure of the OSPFv3 routing infor-

Normal 
operation

12



PROJECT

SYSTEM EVALUATION

IPv4/IPv6
Internet

IPv4-IPv6
translator nodes

Frontend
nodes

Backend
nodes

Proposed
IaaS
system

IP
v4
/IP
v6

IP
v6
-o
nly

Figure 1: The overview of the proposed IaaS system

test cost can also be reduced that will benefit service
providers.

In this proposed system, we assume an IPv4 ad-
dress and an IPv6 address are mapped one to one. Be-
cause the proposed system discussed in this paper is
for IaaS providers providing server resources to their
users, who are PaaS providers, SaaS providers, and/or
ASPs, we cannot design the system to share one IPv4
address by several IPv6 server nodes. We also don’t
consider implementing this requirement using appli-
cation level proxy solution, since service providers
have different requirements for their services, we can-
not limit the communication layer function to appli-
cation layers. This may be a problem considering
that the IPv4 address is scarce resource. However, we
need to use IPv4 address anyway if we want to sup-
port IPv4 clients. And also we need to map addresses
one to one if we want to provide services without any
modification on the client side. Our best effort to han-
dle this issue is that we do not allocate IPv4 addresses
to backend nodes to avoid non-necessary IPv4 use.

The version of an IP protocol used in the backend
network can be either IPv4 or IPv6. In the implemen-
tation shown in this paper, we use IPv6 as an inter-
nal protocol for the backend network considering the
trend of IPv6 transition of the whole Internet.

Figure 1 depicts the overview of the proposed sys-
tem. We said that the frontend nodes provide dual-
stack services to the client before, however precisely
speaking, these frontend nodes do not have any IPv4
addresses. The mapping information between IPv4
and IPv6 addresses are registered to each IPv4-IPv6
translator node and shared by all the translator nodes.
Since the mapping is done in the one to one manner,
no translator nodes need to keep session information
of ongoing communication. They can just translate
IP packets one by one. This makes it possible to place
multiple translator nodes easily to scale out the trans-
lation service when the amount of the traffic grows.
This feature also contributes robustness of the trans-

WIDE
backbone

IPv4/IPv6
Internet

IaaS service nodes

Osaka
NOC

Tokyo
NOC

IPv4/IPv6
translator
nodes

Frontend and
backend nodes

Wide area
L2 network

OSPF
routing

Figure 2: The actual network configuration of the proposed
IaaS system implemented and operated in the WIDE project
operation network

lation system. When one of the translator nodes fails,
we can just remove the failed node from the system.
Since there is no shared session information among
translator nodes, the service is kept by the rest of the
translator nodes without any recovery operation.

Figure 2 shows the overview of the actual system
we are operating. The virtual machine resource man-
agement system located at the bottom of the figure is
the WIDE Cloud Controller (WCC) (WIDE project,
2011) developed by the WIDE project. The two net-
work operation centers (NOC) located at Tokyo and
Osaka are connected by a wide area layer 2 network
technology. The layer 2 network is a 10Gbps fiber
line dedicated to the WIDE project network opera-
tion. There are two layer 3 networks in Tokyo and
Osaka NOC whose network address spaces are same.
These two layer 3 networks are connected by the layer
2 link using VLAN technology. The translator nodes
are placed at each location. The routing information
of the IPv4 addresses used to provide IPv4 connec-
tivity to IPv4 clients is managed using the OSPFv3
routing protocol in the WIDE project backbone net-
work. Since all the translator nodes advertise the same
IPv4 address information using the equal cost strat-
egy, incoming traffic is distributed based on the entry
points of the incoming connections. The aggregated
IPv4 routing information is advertised to the Inter-
net using the BGP routing protocol. Any incoming
IPv4 connection requests from the Internet are routed
to the WIDE backbone based on the BGP informa-
tion, routed to one of the translator nodes based on
the OSPFv3 routing information, and finally routed
to the corresponding virtual machine based on the
static mapping table information stored in the trans-
lator nodes. The translation mechanism is described
in section 3.2. Failure of either Osaka or Tokyo NOC
will result in failure of the OSPFv3 routing infor-

RA stopped
at Tokyo

13



PROJECT

SYSTEM EVALUATION

IPv4/IPv6
Internet

IPv4-IPv6
translator nodes

Frontend
nodes

Backend
nodes

Proposed
IaaS
system

IP
v4
/IP
v6

IP
v6
-o
nly

Figure 1: The overview of the proposed IaaS system

test cost can also be reduced that will benefit service
providers.

In this proposed system, we assume an IPv4 ad-
dress and an IPv6 address are mapped one to one. Be-
cause the proposed system discussed in this paper is
for IaaS providers providing server resources to their
users, who are PaaS providers, SaaS providers, and/or
ASPs, we cannot design the system to share one IPv4
address by several IPv6 server nodes. We also don’t
consider implementing this requirement using appli-
cation level proxy solution, since service providers
have different requirements for their services, we can-
not limit the communication layer function to appli-
cation layers. This may be a problem considering
that the IPv4 address is scarce resource. However, we
need to use IPv4 address anyway if we want to sup-
port IPv4 clients. And also we need to map addresses
one to one if we want to provide services without any
modification on the client side. Our best effort to han-
dle this issue is that we do not allocate IPv4 addresses
to backend nodes to avoid non-necessary IPv4 use.

The version of an IP protocol used in the backend
network can be either IPv4 or IPv6. In the implemen-
tation shown in this paper, we use IPv6 as an inter-
nal protocol for the backend network considering the
trend of IPv6 transition of the whole Internet.

Figure 1 depicts the overview of the proposed sys-
tem. We said that the frontend nodes provide dual-
stack services to the client before, however precisely
speaking, these frontend nodes do not have any IPv4
addresses. The mapping information between IPv4
and IPv6 addresses are registered to each IPv4-IPv6
translator node and shared by all the translator nodes.
Since the mapping is done in the one to one manner,
no translator nodes need to keep session information
of ongoing communication. They can just translate
IP packets one by one. This makes it possible to place
multiple translator nodes easily to scale out the trans-
lation service when the amount of the traffic grows.
This feature also contributes robustness of the trans-

WIDE
backbone

IPv4/IPv6
Internet

IaaS service nodes

Osaka
NOC

Tokyo
NOC

IPv4/IPv6
translator
nodes

Frontend and
backend nodes

Wide area
L2 network

OSPF
routing

Figure 2: The actual network configuration of the proposed
IaaS system implemented and operated in the WIDE project
operation network

lation system. When one of the translator nodes fails,
we can just remove the failed node from the system.
Since there is no shared session information among
translator nodes, the service is kept by the rest of the
translator nodes without any recovery operation.

Figure 2 shows the overview of the actual system
we are operating. The virtual machine resource man-
agement system located at the bottom of the figure is
the WIDE Cloud Controller (WCC) (WIDE project,
2011) developed by the WIDE project. The two net-
work operation centers (NOC) located at Tokyo and
Osaka are connected by a wide area layer 2 network
technology. The layer 2 network is a 10Gbps fiber
line dedicated to the WIDE project network opera-
tion. There are two layer 3 networks in Tokyo and
Osaka NOC whose network address spaces are same.
These two layer 3 networks are connected by the layer
2 link using VLAN technology. The translator nodes
are placed at each location. The routing information
of the IPv4 addresses used to provide IPv4 connec-
tivity to IPv4 clients is managed using the OSPFv3
routing protocol in the WIDE project backbone net-
work. Since all the translator nodes advertise the same
IPv4 address information using the equal cost strat-
egy, incoming traffic is distributed based on the entry
points of the incoming connections. The aggregated
IPv4 routing information is advertised to the Inter-
net using the BGP routing protocol. Any incoming
IPv4 connection requests from the Internet are routed
to the WIDE backbone based on the BGP informa-
tion, routed to one of the translator nodes based on
the OSPFv3 routing information, and finally routed
to the corresponding virtual machine based on the
static mapping table information stored in the trans-
lator nodes. The translation mechanism is described
in section 3.2. Failure of either Osaka or Tokyo NOC
will result in failure of the OSPFv3 routing infor-

Translator 
stopped
at Tokyo

14



PROJECT

SYSTEM EVALUATION

IPv4/IPv6
Internet

IPv4-IPv6
translator nodes

Frontend
nodes

Backend
nodes

Proposed
IaaS
system

IP
v4
/IP
v6

IP
v6
-o
nly

Figure 1: The overview of the proposed IaaS system

test cost can also be reduced that will benefit service
providers.

In this proposed system, we assume an IPv4 ad-
dress and an IPv6 address are mapped one to one. Be-
cause the proposed system discussed in this paper is
for IaaS providers providing server resources to their
users, who are PaaS providers, SaaS providers, and/or
ASPs, we cannot design the system to share one IPv4
address by several IPv6 server nodes. We also don’t
consider implementing this requirement using appli-
cation level proxy solution, since service providers
have different requirements for their services, we can-
not limit the communication layer function to appli-
cation layers. This may be a problem considering
that the IPv4 address is scarce resource. However, we
need to use IPv4 address anyway if we want to sup-
port IPv4 clients. And also we need to map addresses
one to one if we want to provide services without any
modification on the client side. Our best effort to han-
dle this issue is that we do not allocate IPv4 addresses
to backend nodes to avoid non-necessary IPv4 use.

The version of an IP protocol used in the backend
network can be either IPv4 or IPv6. In the implemen-
tation shown in this paper, we use IPv6 as an inter-
nal protocol for the backend network considering the
trend of IPv6 transition of the whole Internet.

Figure 1 depicts the overview of the proposed sys-
tem. We said that the frontend nodes provide dual-
stack services to the client before, however precisely
speaking, these frontend nodes do not have any IPv4
addresses. The mapping information between IPv4
and IPv6 addresses are registered to each IPv4-IPv6
translator node and shared by all the translator nodes.
Since the mapping is done in the one to one manner,
no translator nodes need to keep session information
of ongoing communication. They can just translate
IP packets one by one. This makes it possible to place
multiple translator nodes easily to scale out the trans-
lation service when the amount of the traffic grows.
This feature also contributes robustness of the trans-

WIDE
backbone

IPv4/IPv6
Internet

IaaS service nodes

Osaka
NOC

Tokyo
NOC

IPv4/IPv6
translator
nodes

Frontend and
backend nodes

Wide area
L2 network

OSPF
routing

Figure 2: The actual network configuration of the proposed
IaaS system implemented and operated in the WIDE project
operation network

lation system. When one of the translator nodes fails,
we can just remove the failed node from the system.
Since there is no shared session information among
translator nodes, the service is kept by the rest of the
translator nodes without any recovery operation.

Figure 2 shows the overview of the actual system
we are operating. The virtual machine resource man-
agement system located at the bottom of the figure is
the WIDE Cloud Controller (WCC) (WIDE project,
2011) developed by the WIDE project. The two net-
work operation centers (NOC) located at Tokyo and
Osaka are connected by a wide area layer 2 network
technology. The layer 2 network is a 10Gbps fiber
line dedicated to the WIDE project network opera-
tion. There are two layer 3 networks in Tokyo and
Osaka NOC whose network address spaces are same.
These two layer 3 networks are connected by the layer
2 link using VLAN technology. The translator nodes
are placed at each location. The routing information
of the IPv4 addresses used to provide IPv4 connec-
tivity to IPv4 clients is managed using the OSPFv3
routing protocol in the WIDE project backbone net-
work. Since all the translator nodes advertise the same
IPv4 address information using the equal cost strat-
egy, incoming traffic is distributed based on the entry
points of the incoming connections. The aggregated
IPv4 routing information is advertised to the Inter-
net using the BGP routing protocol. Any incoming
IPv4 connection requests from the Internet are routed
to the WIDE backbone based on the BGP informa-
tion, routed to one of the translator nodes based on
the OSPFv3 routing information, and finally routed
to the corresponding virtual machine based on the
static mapping table information stored in the trans-
lator nodes. The translation mechanism is described
in section 3.2. Failure of either Osaka or Tokyo NOC
will result in failure of the OSPFv3 routing infor-

RA and 
translator 
recovered

15



PROJECT

SYSTEM EVALUATION
mation advertisement from the failed NOC, however,
thanks to the nature of a routing protocol, and one
to one stateless IPv4-IPv6 mapping mechanism, the
other NOC and translator will continue serving the
same address space to the Internet.

3.2 Design and Implementation of the
Translator Software

The server nodes in the IaaS backend system will see
all the communication from their clients as IPv6 con-
nections, since the backend system is operated in IPv6
only. All the IPv4 traffic from clients are intercepted
by the translator nodes and converted to IPv6 traffic.
Figure 3 shows the translation procedure used in the
translator software.

IPv4 address information bound to IPv6 addresses
of servers is stored in the mapping table. Based on the
table, the destination address of the IPv4 packet from
client nodes is converted to the proper IPv6 server ad-
dress. The source address of the IPv6 packet is con-
verted to a pseudo IPv6 address by embedding the
IPv4 address of the client node to the lower 32-bit of
the pseudo IPv6 address. The pseudo IPv6 address is
routed to the translator node inside the backend net-
work. The reply traffic from the server side is also
converted with the similar but opposite procedures.

The mechanism has been implemented using the
tun pseudo network interface device that is now pro-
vided as a part of the basic function of Linux and BSD
operating systems, originally developed by Maxim
Krasnyansky1. The tun network interface can cap-
ture incoming IP packets and redirect them to a user
space program. The user space program can also send
IP packets directly to the network by writing the raw
data of the IP packets to the tun interface. The transla-
tor nodes advertise the routing information of the IPv4
addresses in the mapping table to receive all the traffic
sent to those IPv4 addresses. The incoming packets
are received via the tun network interface and passed
to the user space translator application. The translator
performs the procedure described in figure 3 to trans-
late the IPv4 packet to IPv6 packet. The converted
IPv6 packet is sent back to the tun network interface
and forwarded to the real server that is running with
IPv6 address only.

For the reverse direction, the similar procedure
is applied. Since the translator nodes advertise the
routing information of the pseudo IPv6 address that
includes the IPv4 address of the client node is ad-
vertised to the IaaS backend network, the translator
nodes receive all the reverse traffic. The nodes con-

1http://vtun.sourceforge.net/tun/

Figure 4: RTT measurement in case of failure of a translator

vert those IPv6 packets into IPv4 packets using the
embedded IPv4 client address and mapping table in-
formation, and forward to the original IPv4 client.

This translator software is published as map646
open source software (Keiichi Shima and Wataru
Ishida, 2011), and anyone can use it freely.

4 System Evaluation

We implemented the proposed IaaS system as a
part of the WIDE project service network as shown
in figure 2. By focusing on IPv6-only operation, we
could be free from IPv4 network management.

For the redundancy, we located two translator
nodes in different locations of the WIDE project core
network. We sometimes stop one of them for mainte-
nance. In that case, the other running node is working
as a backup node. We confirmed that the redundancy
mechanism is working automatically in a real opera-
tion.

The incoming traffic to IPv4 addresses are load-
balanced based on the BGP and OSPFv3 informa-
tion. For the outgoing traffic, currently a simple router
preference mechanism is used to choose an upstream
router from IPv6 servers. We are considering using
more advanced traffic engineering methods, such as
destination prefix based routing in near future.

Figure 4 shows the RTT measurement result from
an IPv4 client to an IPv6 server. Initially, both trans-
lator nodes are running. At time 35, we stopped the
router advertisement function of translator in Tokyo.
The traffic from outside to the cloud network still
goes to Tokyo node, but the returning traffic will be
routed to Osaka. At around time 65, we stopped rout-
ing function of the Tokyo node. After this point,
all the traffic goes to Osaka and returns from Os-
aka. We restarted the routing function of Tokyo node,

Normal 
operation

RA stopped
at Tokyo

Translator 
stopped
at Tokyo

RA and 
translator 
recovered16



PROJECT

TRANSLATOR PERFORMANCE

Src: ClientIPv4
Dst: ServerIPv4

Src: Pseudo prefix::ClientIPv4
Dst: ServerIPv6

ServerIPv4 <=> ServerIPv6

Mapping table

Refer

IPv4 packet IPv6 packet

IPv4
client

IPv6
server

IPv4 Internet Proposed IaaS system

Translator

Figure 3: IPv4-IPv6 header translation procedure

IPv4
Client

Trans-
lator

IPv6
Server

IPv4
Client

IPv4
Router

IPv4
Server

IPv6
Client

IPv6
Router

IPv6
Server

IPv6
Client

Trans-
lator

IPv4
Server

C1
Translation (4>6)

C2
Translation (6>4)

C3
IPv4 forwarding

C4
IPv6 forwarding

IPv4

IPv6

IPv4 IPv4

IPv6

IPv4

IPv6 IPv6

Figure 5: The four configurations used in performance eval-
uation

and restarted router advertisement at Tokyo node at
around time 90. Finally, all the traffic came back to
go through Tokyo node.

5 Performance Evaluation

The obvious bottleneck of the system is the trans-
lator nodes where all the traffic must go through with
them. This section shows the evaluation result of the
translation software.

5.1 Translation Performance

The performance evaluation is done with the four dif-
ferent configurations shown in figure 5. The configu-
ration 1 and 2 (C1 and C2) are the translation cases us-
ing our translator software. Configuration 2 (C2) and
3 (C3) use normal IPv4 and IPv6 forwarding mecha-

Table 1: Specification of nodes
Client/Server Translator/Router

CPU Core2 Duo
3.16GHz

Xeon L5630
2.13GHz × 2

Memory 4GB 24GB
OS Linux 3.0.0-12-

server
Linux 3.0.0-12-
server

NIC Intel 82573L Intel 82574L

Figure 6: RTT measurement result using the ping program

nisms to compare the translation performance with no
translation cases.

Evaluation is done using two methods, one is the
ping program to measure RTT, and the other is the
iperf program to measure bandwidth. All the results
in this experiment show the average value of 5 mea-
surement tries2. The computer nodes used in this per-
formance test are shown in table 1, and all the tests
were performed locally by directly connecting 3 com-
puters as shown in figure 5.

Figure 6 shows the result of the ping test. The RTT
values were 0.45ms in C1, 0.43ms in C2, 0.36ms in

2We didn’t record standard deviation of these tries, since
the results were stable.

Test network configurations

Translation

Normal
forwarding

17



PROJECT

SPECIFICATION OF 
EQUIPMENTS USED

Src: ClientIPv4
Dst: ServerIPv4

Src: Pseudo prefix::ClientIPv4
Dst: ServerIPv6

ServerIPv4 <=> ServerIPv6

Mapping table

Refer

IPv4 packet IPv6 packet

IPv4
client

IPv6
server

IPv4 Internet Proposed IaaS system

Translator

Figure 3: IPv4-IPv6 header translation procedure

IPv4
Client

Trans-
lator

IPv6
Server

IPv4
Client

IPv4
Router

IPv4
Server

IPv6
Client

IPv6
Router

IPv6
Server

IPv6
Client

Trans-
lator

IPv4
Server

C1
Translation (4>6)

C2
Translation (6>4)

C3
IPv4 forwarding

C4
IPv6 forwarding

IPv4

IPv6

IPv4 IPv4

IPv6

IPv4

IPv6 IPv6

Figure 5: The four configurations used in performance eval-
uation

and restarted router advertisement at Tokyo node at
around time 90. Finally, all the traffic came back to
go through Tokyo node.

5 Performance Evaluation

The obvious bottleneck of the system is the trans-
lator nodes where all the traffic must go through with
them. This section shows the evaluation result of the
translation software.

5.1 Translation Performance

The performance evaluation is done with the four dif-
ferent configurations shown in figure 5. The configu-
ration 1 and 2 (C1 and C2) are the translation cases us-
ing our translator software. Configuration 2 (C2) and
3 (C3) use normal IPv4 and IPv6 forwarding mecha-

Table 1: Specification of nodes
Client/Server Translator/Router

CPU Core2 Duo
3.16GHz

Xeon L5630
2.13GHz × 2

Memory 4GB 24GB
OS Linux 3.0.0-12-

server
Linux 3.0.0-12-
server

NIC Intel 82573L Intel 82574L

Figure 6: RTT measurement result using the ping program

nisms to compare the translation performance with no
translation cases.

Evaluation is done using two methods, one is the
ping program to measure RTT, and the other is the
iperf program to measure bandwidth. All the results
in this experiment show the average value of 5 mea-
surement tries2. The computer nodes used in this per-
formance test are shown in table 1, and all the tests
were performed locally by directly connecting 3 com-
puters as shown in figure 5.

Figure 6 shows the result of the ping test. The RTT
values were 0.45ms in C1, 0.43ms in C2, 0.36ms in

2We didn’t record standard deviation of these tries, since
the results were stable.

18



PROJECT

RTT COMPARISON

Src: ClientIPv4
Dst: ServerIPv4

Src: Pseudo prefix::ClientIPv4
Dst: ServerIPv6

ServerIPv4 <=> ServerIPv6

Mapping table

Refer

IPv4 packet IPv6 packet

IPv4
client

IPv6
server

IPv4 Internet Proposed IaaS system

Translator

Figure 3: IPv4-IPv6 header translation procedure

IPv4
Client

Trans-
lator

IPv6
Server

IPv4
Client

IPv4
Router

IPv4
Server

IPv6
Client

IPv6
Router

IPv6
Server

IPv6
Client

Trans-
lator

IPv4
Server

C1
Translation (4>6)

C2
Translation (6>4)

C3
IPv4 forwarding

C4
IPv6 forwarding

IPv4

IPv6

IPv4 IPv4

IPv6

IPv4

IPv6 IPv6

Figure 5: The four configurations used in performance eval-
uation

and restarted router advertisement at Tokyo node at
around time 90. Finally, all the traffic came back to
go through Tokyo node.

5 Performance Evaluation

The obvious bottleneck of the system is the trans-
lator nodes where all the traffic must go through with
them. This section shows the evaluation result of the
translation software.

5.1 Translation Performance

The performance evaluation is done with the four dif-
ferent configurations shown in figure 5. The configu-
ration 1 and 2 (C1 and C2) are the translation cases us-
ing our translator software. Configuration 2 (C2) and
3 (C3) use normal IPv4 and IPv6 forwarding mecha-

Table 1: Specification of nodes
Client/Server Translator/Router

CPU Core2 Duo
3.16GHz

Xeon L5630
2.13GHz × 2

Memory 4GB 24GB
OS Linux 3.0.0-12-

server
Linux 3.0.0-12-
server

NIC Intel 82573L Intel 82574L

Figure 6: RTT measurement result using the ping program

nisms to compare the translation performance with no
translation cases.

Evaluation is done using two methods, one is the
ping program to measure RTT, and the other is the
iperf program to measure bandwidth. All the results
in this experiment show the average value of 5 mea-
surement tries2. The computer nodes used in this per-
formance test are shown in table 1, and all the tests
were performed locally by directly connecting 3 com-
puters as shown in figure 5.

Figure 6 shows the result of the ping test. The RTT
values were 0.45ms in C1, 0.43ms in C2, 0.36ms in

2We didn’t record standard deviation of these tries, since
the results were stable.

• RTT degradation is around 
0.07ms to 0.09ms 
worse

Translate Normal

19



PROJECT

TCP PERFORMANCE

Figure 7: TCP bandwidth measurement using the iperf pro-
gram

Figure 8: UDP bandwidth measurement using the iperf pro-
gram

C3, and 0.36ms in C4.
Figure 7 shows the result of the TCP band-

width measurement test. The bandwidth values were
923.8Mbps in C1, 922.8Mbps in C2, 938.0Mbps in
C3, and 925.8Mbps in C4.

Figure 8 shows the result of the UDP bandwidth
measurement test. We changed the transmission rate
of the sender side from 100Mbps to 1000Mbps with
100Mbps step, and measured how much bandwidth
was achieved at the receiver side. The maximum
bandwidth values were 786.0Mbps in C1, 802.0Mbps
in C2, 802.0Mbps in C3, and 802.0Mbps in C4.

5.2 Comparison with Related Method

In this section, we compare the translation perfor-
mance of map646 to linuxnat64 (Julius Kriukas,
2012) which is one of the NAT64 implementations.
The main usage of NAT64 is to provide access to IPv4
servers from IPv6-only nodes. Because of the differ-
ence of the usage scenario, we located a server in the
IPv4 network side, and located a client in the IPv6
network side in this test (the C2 case). This is op-
posite to our proposed IaaS usage, however we think
the test can give us meaningful result in the sense of
performance comparison. In this test, we used Linux
2.6.32 instead of 3.0.0-12-server because linuxnat64
did not support Linux version 3 when we performed

Figure 9: RTT comparison of map646 and linuxnat64

Figure 10: TCP bandwidth comparison of map646 and lin-
uxnat64

this test. There is no big difference of IPv4/IPv6 for-
warding performance between Linux version 2 and 3.
We are planning to test again with a newer kernel once
linuxnat64 supports it.

Figure 9 shows the RTT measurement result. The
values are 0.55ms in the map646 case, and 0.39ms in
the linuxnat64 case.

Figure 10 shows the TCP bandwidth measurement
result. The bandwidth values were 903.2Mbps in
the map646 case, and 879.8Mbps in the linuxnat64
case. Figure 11 is the result of the UDP throughput
measurement. The maximum bandwidth values were
943.0Mbps in the map646 case, and 943.0Mbps in the
linuxnat64 case.

5.3 Consideration

Based on the observation in section 4, we could
consider the proposed IaaS system could reduce the
maintenance cost, achieve redundancy and scalabil-
ity.

For the performance, as shown in figure 6, the
RTT degradation is around 0.07ms to 0.09ms. This
is reasonable because map646 is implemented as a
user space program while IPv4 and IPv6 forwarding
are implemented inside kernel. The other potential
reason of the degradation is a mapping entry lookup
overhead. In this experiment, we only defined two

• The forwarding performance 
of translator is 1.5% to 
1.6% worse than normal 
forwarding

Translate Normal

20



PROJECT

UDP PERFORMANCE
Figure 7: TCP bandwidth measurement using the iperf pro-
gram

Figure 8: UDP bandwidth measurement using the iperf pro-
gram

C3, and 0.36ms in C4.
Figure 7 shows the result of the TCP band-

width measurement test. The bandwidth values were
923.8Mbps in C1, 922.8Mbps in C2, 938.0Mbps in
C3, and 925.8Mbps in C4.

Figure 8 shows the result of the UDP bandwidth
measurement test. We changed the transmission rate
of the sender side from 100Mbps to 1000Mbps with
100Mbps step, and measured how much bandwidth
was achieved at the receiver side. The maximum
bandwidth values were 786.0Mbps in C1, 802.0Mbps
in C2, 802.0Mbps in C3, and 802.0Mbps in C4.

5.2 Comparison with Related Method

In this section, we compare the translation perfor-
mance of map646 to linuxnat64 (Julius Kriukas,
2012) which is one of the NAT64 implementations.
The main usage of NAT64 is to provide access to IPv4
servers from IPv6-only nodes. Because of the differ-
ence of the usage scenario, we located a server in the
IPv4 network side, and located a client in the IPv6
network side in this test (the C2 case). This is op-
posite to our proposed IaaS usage, however we think
the test can give us meaningful result in the sense of
performance comparison. In this test, we used Linux
2.6.32 instead of 3.0.0-12-server because linuxnat64
did not support Linux version 3 when we performed

Figure 9: RTT comparison of map646 and linuxnat64

Figure 10: TCP bandwidth comparison of map646 and lin-
uxnat64

this test. There is no big difference of IPv4/IPv6 for-
warding performance between Linux version 2 and 3.
We are planning to test again with a newer kernel once
linuxnat64 supports it.

Figure 9 shows the RTT measurement result. The
values are 0.55ms in the map646 case, and 0.39ms in
the linuxnat64 case.

Figure 10 shows the TCP bandwidth measurement
result. The bandwidth values were 903.2Mbps in
the map646 case, and 879.8Mbps in the linuxnat64
case. Figure 11 is the result of the UDP throughput
measurement. The maximum bandwidth values were
943.0Mbps in the map646 case, and 943.0Mbps in the
linuxnat64 case.

5.3 Consideration

Based on the observation in section 4, we could
consider the proposed IaaS system could reduce the
maintenance cost, achieve redundancy and scalabil-
ity.

For the performance, as shown in figure 6, the
RTT degradation is around 0.07ms to 0.09ms. This
is reasonable because map646 is implemented as a
user space program while IPv4 and IPv6 forwarding
are implemented inside kernel. The other potential
reason of the degradation is a mapping entry lookup
overhead. In this experiment, we only defined two

• The forwarding performance 
of translator is 2.0% 
worse than normal 
forwarding

21



PROJECT

RELATED TECHNOLOGIES

• Application layer gateway

• Pros: useful when complicated application protocol 
conversion is required

• Cons: per application gateway is required

22



PROJECT

RELATED TECHNOLOGIES

• Transport layer gateway

• Pros: transparent from users

• Cons: library upgrade (e.g. SOCKS64), DNS service upgrade 
(TRT and DNS64)

23



PROJECT

RELATED TECHNOLOGIES

• DNS64/NAT64 (IP layer approach)

• Pros: transparent from users

• Cons: DNS service upgrade

24



PROJECT

RELATED TECHNOLOGIES

• In theory, every translation technologies can be used as a 
translation component of our proposal

• Most of the current implementation doesn’t support our 
operation (IPv6 nodes as servers for IPv4 clients)

• And they have too rich function for our solution (such as 
one to many mapping function)

25



PROJECT

COMPARISON WITH NAT64

Figure 7: TCP bandwidth measurement using the iperf pro-
gram

Figure 8: UDP bandwidth measurement using the iperf pro-
gram

C3, and 0.36ms in C4.
Figure 7 shows the result of the TCP band-

width measurement test. The bandwidth values were
923.8Mbps in C1, 922.8Mbps in C2, 938.0Mbps in
C3, and 925.8Mbps in C4.

Figure 8 shows the result of the UDP bandwidth
measurement test. We changed the transmission rate
of the sender side from 100Mbps to 1000Mbps with
100Mbps step, and measured how much bandwidth
was achieved at the receiver side. The maximum
bandwidth values were 786.0Mbps in C1, 802.0Mbps
in C2, 802.0Mbps in C3, and 802.0Mbps in C4.

5.2 Comparison with Related Method

In this section, we compare the translation perfor-
mance of map646 to linuxnat64 (Julius Kriukas,
2012) which is one of the NAT64 implementations.
The main usage of NAT64 is to provide access to IPv4
servers from IPv6-only nodes. Because of the differ-
ence of the usage scenario, we located a server in the
IPv4 network side, and located a client in the IPv6
network side in this test (the C2 case). This is op-
posite to our proposed IaaS usage, however we think
the test can give us meaningful result in the sense of
performance comparison. In this test, we used Linux
2.6.32 instead of 3.0.0-12-server because linuxnat64
did not support Linux version 3 when we performed

Figure 9: RTT comparison of map646 and linuxnat64

Figure 10: TCP bandwidth comparison of map646 and lin-
uxnat64

this test. There is no big difference of IPv4/IPv6 for-
warding performance between Linux version 2 and 3.
We are planning to test again with a newer kernel once
linuxnat64 supports it.

Figure 9 shows the RTT measurement result. The
values are 0.55ms in the map646 case, and 0.39ms in
the linuxnat64 case.

Figure 10 shows the TCP bandwidth measurement
result. The bandwidth values were 903.2Mbps in
the map646 case, and 879.8Mbps in the linuxnat64
case. Figure 11 is the result of the UDP throughput
measurement. The maximum bandwidth values were
943.0Mbps in the map646 case, and 943.0Mbps in the
linuxnat64 case.

5.3 Consideration

Based on the observation in section 4, we could
consider the proposed IaaS system could reduce the
maintenance cost, achieve redundancy and scalabil-
ity.

For the performance, as shown in figure 6, the
RTT degradation is around 0.07ms to 0.09ms. This
is reasonable because map646 is implemented as a
user space program while IPv4 and IPv6 forwarding
are implemented inside kernel. The other potential
reason of the degradation is a mapping entry lookup
overhead. In this experiment, we only defined two

Figure 7: TCP bandwidth measurement using the iperf pro-
gram

Figure 8: UDP bandwidth measurement using the iperf pro-
gram

C3, and 0.36ms in C4.
Figure 7 shows the result of the TCP band-

width measurement test. The bandwidth values were
923.8Mbps in C1, 922.8Mbps in C2, 938.0Mbps in
C3, and 925.8Mbps in C4.

Figure 8 shows the result of the UDP bandwidth
measurement test. We changed the transmission rate
of the sender side from 100Mbps to 1000Mbps with
100Mbps step, and measured how much bandwidth
was achieved at the receiver side. The maximum
bandwidth values were 786.0Mbps in C1, 802.0Mbps
in C2, 802.0Mbps in C3, and 802.0Mbps in C4.

5.2 Comparison with Related Method

In this section, we compare the translation perfor-
mance of map646 to linuxnat64 (Julius Kriukas,
2012) which is one of the NAT64 implementations.
The main usage of NAT64 is to provide access to IPv4
servers from IPv6-only nodes. Because of the differ-
ence of the usage scenario, we located a server in the
IPv4 network side, and located a client in the IPv6
network side in this test (the C2 case). This is op-
posite to our proposed IaaS usage, however we think
the test can give us meaningful result in the sense of
performance comparison. In this test, we used Linux
2.6.32 instead of 3.0.0-12-server because linuxnat64
did not support Linux version 3 when we performed

Figure 9: RTT comparison of map646 and linuxnat64

Figure 10: TCP bandwidth comparison of map646 and lin-
uxnat64

this test. There is no big difference of IPv4/IPv6 for-
warding performance between Linux version 2 and 3.
We are planning to test again with a newer kernel once
linuxnat64 supports it.

Figure 9 shows the RTT measurement result. The
values are 0.55ms in the map646 case, and 0.39ms in
the linuxnat64 case.

Figure 10 shows the TCP bandwidth measurement
result. The bandwidth values were 903.2Mbps in
the map646 case, and 879.8Mbps in the linuxnat64
case. Figure 11 is the result of the UDP throughput
measurement. The maximum bandwidth values were
943.0Mbps in the map646 case, and 943.0Mbps in the
linuxnat64 case.

5.3 Consideration

Based on the observation in section 4, we could
consider the proposed IaaS system could reduce the
maintenance cost, achieve redundancy and scalabil-
ity.

For the performance, as shown in figure 6, the
RTT degradation is around 0.07ms to 0.09ms. This
is reasonable because map646 is implemented as a
user space program while IPv4 and IPv6 forwarding
are implemented inside kernel. The other potential
reason of the degradation is a mapping entry lookup
overhead. In this experiment, we only defined two

Figure 12: Simulated result of mapping table lookup and address conversion overhead
(left figure: 1000 to 26000 entries, right figure: 1000 to 128000 entries)

Figure 11: UDP bandwidth comparison of map646 and lin-
uxnat64

mapping entries in map646. We have not measured
the overhead when there are a lot of mapping entries,
however we think it will not affect the total perfor-
mance because we are using a hash table for map-
ping information lookup. Figure 12 shows the sim-
ulated result of the lookup and address conversion
overhead for different number of mapping entries. In
our implementation, the size of the hash table is 1009.
From the left figure in figure 12, we can see the ta-
ble lookup and address conversion is done in almost
constant time when the size of the mapping entries is
less than 10000. When the size of the table grows,
the lookup and conversion time also grows linearly as
can see in the right figure in figure 12. The lookup and
conversion overhead of one entry is around 2 µs when
there are 128 thousands of mapping entries. This
value is enough small that can be ignored compared
to the RTT degradation value. However we agree that
the real measurement of the performance degradation
with many mapping entries is an important topic, and
it is one of our future works.

The forwarding performance of map646 is 1.5%
to 1.6% worse than the normal forwarding case in the
TCP case, and 2.0% in the UDP case. We actually did
not see a big degradation in both TCP and UDP cases.

This means that the translation itself is enough fast to
process all the incoming packets. We can conclude
that the performance of the map646 translator soft-
ware is acceptable for the real operation. One thing
we have to note is that the test is done using 1Gbps
network interfaces. Because of recent advance of pro-
cessor technology, 1Gbps is not too fast any more. We
will perform further measurement in faster environ-
ment such as 10Gbps network interfaces.

From figure 10 and 11, we can see almost no
degradation compared to linuxnat64 implementation.
Map646 achieved even better performance than lin-
uxnat64 in the TCP case. We expected a slight degra-
dation in the map646 case, since linuxnat64 is imple-
mented as a kernel module while map646 is a user
space program, but the result did not show any big
difference. This result shows that the performance
highly depends on how the software is implemented.
As similar as the previous result, we will perform the
same test using 10Gbps networks to verify the per-
formance of map646 in a broader bandwidth environ-
ment as follow-up works.

We are actually operating several web servers as
a part of our daily operation. The examples of those
servers are the WIDE project web server3, the web
server of the Graduate School of Information Science
and Technology at the University of Tokyo Japan4, the
DNS server for the wide.ad.jp domain, the web server
for the Internet Conference5, the KAME project web
server6, and so on. The real operation of these servers
also proves the system usability.

Finally we note some of the concerns of the pro-
posed system. This proposed system requires the
same number of IPv4 addresses as the frontend server

3http://www.wide.ad.jp/
4http://www.i.u-tokyo.ac.jp/
5http://www.internetconference.org/
6http://www.kame.net/

• Almost same or even better 
performance

26



PROJECT

CONCLUSION

• Proposed a new style of IaaS operation based on IPv6 only 
network to reduce operation cost, and provide IPv4 
compatibility with a 64 translator

• Verified redundant operation of the translation system

• Implemented a simple 64 one to one translator for the 
proposed IaaS system and evaluated its performance

27


