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Outstanding Al works

In recent years, Al, more specifically, Deep Learning (DL),
IS getting notable attention

Especially in media recognition fields, such as image,
voice recognition, etc.

Some researchers are also trying to apply DL in different
fields (e.g. factory robots, games, etc)

Back to our works, are we getting a benefit from Al
technologies?



Difficulties

e DL (or Machine Learning (ML) also) requires information to
be converted into vectors

e \We call it as a feature vector

e Designing the model of the feature vector requires deep
knowledge of the target information domains



Why is DL so hot?

Because recent DL applications don’t require to extract
features manually

A neural network learns which parts of information are
important from a lot of examples

For example, we can just throw the binary photo data into
a neural network and that’s it

Well, it is not that simple, anyway :)



What we are

BIG DATA
5"
We are not good at We have Don’t think
feature extraction computers Just try

We'’ve established the Muscle Learning (ML) team in WIDE
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What we try to achieve

e We are thinking if we can apply the similar approach used
for image recognition to network information

e Just put (almost) raw data and let the machines extract
features

No need to achieve domain specific deep knowledge
before analyzing



Back to URLs

e Phishing is one of the major techniques to steal personal
information

e 1,220,523 attacks were reported in 2016 (*1)
e There are several services to defend
e URL whitelisting

e Contents investigation

(*1) Anti Phishing WG report: http://docs.apwg.org/reports/apwg_trends_report_ g4 _2016.pdf
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URL features?

e Challenges

e |s there any hidden features in the URL strings used for
phishing sites?

e |s it possible to distinguish “white” URLs and “black”
URLs by just looking at the URL strings?

e We try to vectorize URLs to use as input information of
ML methods without any specific domain knowledge



How to vectorize?

www.lij.ad.jp/index.html
¢ Split characters

www.113jJ.ad. jp/index.html

¢ Convert the URL into HEX values

1777772E69696A2E61642E6AT703F696E6465782E68746D6C
¢ Extract 8-bits values by shifting 4 bits in the HEX values

77,77,77,77,77,72,2E, 3F,F6,69,96,6E,E6,64,
E6,69,96,69,96,6A,A2, 46 ,65,57,78,82,2E,E6,
2E,E6,61,16,64,42,2E, 68,87,74,46,6D,D6,6C
E6,6A,A7,70

Count the number of unique values for the host part and the URL
path part respectively (Bag of features)



How to vectorize?

www.llJj.ad.]jp index.html
16 » 1 2E » 3 JE 5 1 46 o 1
42 » 1 61 » 1 57 5 1 65 o 1
64 > 1 69 »> 2 68 5 1 6C = 1
6A > 2 70 » 1 6D - 1 74 - 1
72 > 1 77 » 5 78 5 1 82 - 1
96 » 2 A2 » 1 87 5 1 D6 » 1
A7 > 1 E6 » 3
E6 » 1

256 dimensional 256 dimensional
sparse vector sparse vector
512 dimensional
sparse vector



Neural network topology

A 512 dimensional vector generated from a URL string

Linear mapping to 256 nodes

Linear mapping to 256 nodes

L _J
Reduction to 2 nodes ( )
T Gy

i
B <«<——Loss calculation
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Classify using
the neural network

e Datasets

e 26722 “black” URLs downloaded from www.phishtank.com
which are active phishing site URLs as of 2017-4-24

e 175290 “white” URLs captured at a research network
e Method
e Convert all the URLSs into vectors and shuffle them

e 10% of them were used for the DNN training and the rest
were used for validation
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Accuracy and Loss
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The neural network topology
of eXpose

Eaiiiaiade s
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The neural network topology
of eXpose

A URL string (200 characters at max)

a7 e e
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Convert each character
into a 32 dimensional
vector
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The neural network topology
of eXpose

Fitsta TR, = e

Convolution using 4
different sizes to make
256 nodes for each
(1024 nodes in total)
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The neural network topology
of eXpose

S =T s

i

Perform 1024 to 1024
linear mapping 3 times
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The neural network topology

ESopesmnntesssasansaners ST T P S LR

Finally reduce the node
into 2 nodes -
S
Y rd

OK, great
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Comparison with
the same dataset
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Summary

We are trying to utilize Deep Learning technologies for
network information

The goal is to provide better vectorization mechanisms for
network data that don’t require any domain specific
knowledge

The proposed URL vectorization works with some limited
sets of data, but can be improved more

We will explore further
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