DESIGN, IMPLEMENTATION, AND OPERATION OF IPv6-ONLY
IaaS SYSTEM WITH IPv4-IPv6 TRANSLATOR FOR TRANSITION
TOWARD THE FUTURE INTERNET DATACENTER

Keiichi Shima!, Wataru Ishida® and Yuji Sekiya’

L1J Innovation Institute, 1-105 Kanda-jinbocho, Chiyoda-ku, Tokyo, Japan
2The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
3The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, Japan
keiichi @iijlab.net, wataru@hongo.wide.ad.jp, sekiya@wide.ad.jp

Keywords:

Abstract:

Cloud Middleware Frameworks, laaS, Scalability, Redundancy, Cost Reduction, IPv6, IPv4 Compatibility.

Internet operation is migrating from IPv4-only operation to IPv4/IPv6 dual-stack operation. From the view-

point of the operation cost, it is best if the operation can be done only with a single protocol, either IPv4 or
IPv6. However, it is mandatory for service providers to accept all three types of users, 1) IPv4-only users who
will remain in the Internet for long time, 2) IPv4/IPv6 dual-stack users who will be a dominant users in near
future, and 3) IPv6-only users who will appear in the future as IPv6 deployment progresses. In this paper, we
propose a recommended operation model designed for the IaaS system operated with IPv6-only network with
a wide area L2 network and IPv4-IPv6 translation software for backward compatibility. With our proposal,
we can reduce the use of IPv4 addresses in the cloud backend network, and provide high-performance, scal-
able, and redundant address translation software suitable for the IPv6-only IaaS system that can be one of the

reference operation models of future datacenters.

1 INTRODUCTION

The computing power of computers is growing ev-
ery year. However, many studies show that there is
an obvious limitation of computing power if we stick
one single processor system. Because of this reason,
cloud computing technologies are getting attention of
many people. Researchers are now investigating its
usage, application model, and operation techniques
to utilize the limited resources more effectively. At
the same time, virtualization technologies that enable
us to slice one physical computer into several vir-
tual computer resources to suppress idle resources as
much as possible. With the virtualization technolo-
gies, it is expected that we will have a huge com-
puter network that includes far larger number of vir-
tual computers than the physical computers.

The network protocol used to interconnect com-
puters has been the IPv4 protocol for long time. How-
ever, because of recent depletion of IPv4 addresses,
the successor protocol, IPv6, is now being deployed.
Since we can still use IPv4 addresses and its network
even though we do not have new IPv4 addresses, the
future network will be a mixed network of IPv4 and

306

IPv6 for many years until IPv4 disappears completely.

Service providers must support both IPv4 and
IPv6, because service users will be mixed users
of IPv4-only users, IPv4/IPv6 dual-stack users, and
IPv6-only users in the future. Although IPv4 and IPv6
are technically quite similar except the size of their
address space, however, these protocols do not have
interoperability because their protocol header formats
are completely different. The operators have to man-
age two similar networks. That is a duplicated effort.

If we can manage and operate a single stack net-
work for the service backend nodes and place dual-
stack nodes only as the entry points to the services,
then we can reduce the operation cost to manage two
duplicated networks. We can also quickly follow the
technology advance of the network by focusing on
only one single protocol stack. In this paper, we fo-
cus on a virtual computer resource management envi-
ronment (IaaS, Infrastructure As A Service) and pro-
pose a system whose backend network is operated by
IPv6-only with dual-stack public nodes as service en-
try points using IPv4-IPv6 protocol translator soft-
ware. This kind of IPv4-IPv6 protocol translator is
not a new technology. It was proposed almost as same

DESIGN, IMPLEMENTATION, AND OPERATION OF IPv6-ONLY IaaS SYSTEM WITH IPv4-IPv6 TRANSLATOR
FOR TRANSITION TOWARD THE FUTURE INTERNET DATACENTER

time as [Pv6 was proposed. However, such a trans-
lator is basically assuming to map one IPv4 address
to multiple IPv6 addresses, because its main usage
is to provide IPv4 connectivity to IPv6 only nodes
originally. This means the software tends to become
complicated because it has to keep track on the ad-
dress mapping status and session status among mul-
tiple IPv6 addresses. It also has a scalability and re-
dundancy problem because it needs to manage many
mapping information and session status and this status
information is hard to share and synchronize among
multiple translator nodes. Our proposed system par-
ticularly insists on one-to-one address mapping which
doesn’t have problems addressed above, with the as-
sumption that the translator is used as a part of an [aaS
system. With this compromise, we can design a real-
istic IaaS system without having problems of existing
[Pv4-IPv6 translation system as described before and
realize IPv6-only backend service operation.

2 RELATED WORKS

2.1 IaaS Model

Needless to say, most of the current service providers
are using IPv4 as their base IP protocol to build ser-
vices. As IPv6 is getting popular, some of them are
now considering to supporting dual-stack service us-
ing translators. Although there are several transition
scenarios to move from IPv4 to IPv6 (Mackay et al.,
2003), they basically use IPv4 for server nodes and
provide IPv6 connectivity to IPv6 clients using trans-
lator technology. This is the biggest difference from
our approach. We use IPv6 addresses for server nodes
and provide dual stack connectivity to client nodes.
Considering that the IPv6 clients are going to grow in
the future, focusing on IPv6 and providing IPv4 as an
additional service seems the right choice.

The traditional translation operation is shown in
section 2.1 of Chen’s paper (Chen, 2011). We think
that the model has several drawbacks. First, since it
uses IPv4 for their backend service networks, it may
face the IPv4 depletion problem. Second, if they use
private IPv4 address space to avoid the [Pv4 depletion
issue, they may face IPv4 NAT traversal issues for
servers they are operating in their private networks.
Third, if they use NAT for their servers, they have to
operate two NAT services, one for IPv4 private ad-
dresses, and the other for IPv6-1Pv4 addresses. In our
proposed model, IPv6 services are provided natively,
and IPv4 services are provided using translation. De-
tailed discussion is provided in section 3.1.

2.2 Translators

Discussion to develop technologies to bridge IPv4
and IPv6 was started as early as when IPv6 protocol
designers decided not to provide IPv4 backward com-
patibility in IPv6. Waddington and Chang summa-
rized IPv4-IPv6 transition mechanisms in their paper
(Waddington and Chang, 2002). From the viewpoint
of translation mechanisms, we can classify these tran-
sition technologies into three approaches. The first
approach is providing interoperability in the applica-
tion layer, the second approach is relaying data in the
transport layer, and the last is converting an IP header
in the IP layer.

The first approach, the application layer approach
is performed by proxy server software designed for
each application protocol that needs interoperability
between IPv4 and IPv6. The proxy server will be
located at the boundary of IPv4 and IPv6 networks
and accept specific application requests (e.g. web re-
quests) from client nodes. The proxy server inter-
prets the request contents, build a new request for
the destination server, and send it using a proper IP
protocol. The response from the server node is inter-
cepted and resent by the proxy server as well. Since
the proxy server understands the application protocol
completely, this approach can be most flexible com-
pared to the other approaches. On the other hand, de-
velopment per application protocol is required which
will increase development and operation cost. This
approach is mostly used when we only need com-
plex context processing in between IPv4 and IPv6 net-
works, since many services can be interoperable using
the rest of the approaches.

In the second approach, the transport layer ap-
proach, the relay server located in between the IPv4
and IPv6 networks terminates incoming connections
from clients at the socket level, and starts new trans-
port connections to the destination server on the other
side of the network. The well-known mechanisms
of this approach are, for example, SOCKS64 (Ki-
tamura, 1999; Kitamura, 2001) and Transport Re-
lay Translator (itojun Hagino and Yamamoto, 2001).
In SOCKS64, the client side SOCKS64 library re-
places the DNS name resolution and socket I/O func-
tions to intercept all the client traffic and forward to a
SOCKS64 server. This mechanism requires client ap-
plications to be updated to use the SOCKS64 library,
however, once the library is replaced, applications do
not need to pay any attention to [Pv4-IPv6 translation
issues. The Transport Relay Translator does not re-
quire any update to client applications. Instead, the
mechanism assumes that clients use specially crafted
IPv6 addresses in which IPv4 address of the server is

307

CLOSER 2012 - 2nd International Conference on Cloud Computing and Services Science

embedded, when IPv6 clients are going to connect to
IPv4 servers. The relay server terminates the incom-
ing IPv6 connections from client nodes and starts new
connections to the destination servers using the server
address extracted from the special IPv6 address. Such
special IPv6 addresses are usually provided by the site
level special DNS server in the client site that supports
DNS64 (Bagnulo et al., 2011b).

The third approach, the IP layer header transla-
tion is similar to the NAT technology used in IPv4.
Examples of this approach are NAT-PT (Tsirtsis and
Srisuresh, 2000) and NAT64 (Bagnulo et al., 2011a).
In this approach, the translation server does not need
to terminate connections between clients and servers.
The address fields and other header fields of pack-
ets reached to the translator node will be translated
based on the predefined header transformation rules
between IPv4 and IPv6.

These related technologies were originally de-
signed for the situation that there are IPv4 server
nodes in the Internet, and IPv6 client nodes are going
to connect to those IPv4 servers. In a real operation,
it is assumed that one or a few IPv4 addresses are al-
located to the translation server, and many IPv6 client
nodes share the IPv4 addresses. However, the system
discussed in this paper assumes the opposite case, that
is, there are IPv6 server nodes in a cloud system, and
existing IPv4 or IPv6 client nodes are going to con-
nect to the IPv6 servers. In this case, we cannot share
IPv4 addresses between many IPv6 servers without
any modification to the IPv4 client side. Because of
this nature, we have to map one IPv4 address to one
IPv6 server eventually. Of course, the previous works
and proposed mechanisms can do the same scenario
in theory, however, there are few implementations that
can support the case we are assuming.

There are some evaluation studies in these trans-
lation technologies (Mackay and Edwards, 2006;
Skoberne and Ciglari¢, 2011). However, since the
performance of the mechanisms highly depends on
how the mechanisms are implemented, we need to
compare whenever we design a new translation soft-
ware.

There are several commercial devices providing
[Pv4-IPv6 translation function. Most of them are tar-
geting a translation service of internal IPv6 client con-
nection requests generated inside the customer’s net-
work, to global IPv4 servers. Different from the exist-
ing translation products, our approach targets on ser-
vice provider side and provides a function for IPv4
legacy clients to connect servers running with IPv6
only.

Our approach runs without keeping any state in-
formation of connections, while most of translator

308

products are stateful. This is because existing transla-
tor products are for IPv6 client nodes, and shares one
IPv4 address among several IPv6 clients. Our pro-
posal assumes completely different operation, that is,
translation service for servers. Because of this dif-
ference, our approach is implemented as stateless ser-
vice. That makes it easier to place multiple transla-
tors at several network exit points and distribute traffic
load.

In this paper, we propose a new laaS system de-
sign and IPv4-IPv6 translator design and implemen-
tation that only use IPv6 as its service backend net-
work, providing dual-stack service to both IPv4 and
IPv6 clients. We also give the performance measure-
ment results of the system.

3 DESIGN AND
IMPLEMENTATION OF THE
IaaS SYSTEM AND THE
TRANSLATION SOFTWARE

In this section, we describe the overview of the pro-
posed IaaS system and design of the IPv4-IPv6 header
translation software.

3.1 Design and Implementation of the
IaaS System

The system we are targeting is an laaS system that
provides virtual computers as a unit of resources us-
ing virtualization technology. Service integrators can
use virtual computers as their service components by
requesting the IaaS system to slice physical comput-
ers to make virtual computers whenever needed. The
actual configuration of a service varies in each ser-
vice, however, one service usually composed of sev-
eral computers, such as a web frontend node, load bal-
ancers, a database node, and so on. Services such as a
distributed storage may need larger number of virtual
computers as a backend system. When we consider
providing a dual-stack service to users, one possible
implementation is building the IaaS system as a com-
plete dual-stack system. However, as we discussed in
section 1, we will have a duplicated effort to maintain
two different network stacks, which they have almost
same functions. Since the service users usually only
see the frontend nodes, it will be sufficient if we can
make those frontend nodes dual-stack. The communi-
cation between the frontend nodes and backend nodes
do not necessarily be dual-stack. By focusing only
one protocol stack inside the IaaS system, the network

DESIGN, IMPLEMENTATION, AND OPERATION OF IPv6-ONLY IaaS SYSTEM WITH IPv4-IPv6 TRANSLATOR
FOR TRANSITION TOWARD THE FUTURE INTERNET DATACENTER

IPv4/IPv6 Q
Internet %
<
a
¥ IPva-IPv6 §
translator nodes
Proposed
I:aS Frontend %‘
nodes ?
system ©
o
Backend
nodes

Figure 1: The overview of the proposed laaS system.

design will be simpler that will benefit the IaaS ser-
vice provider, and the service development cost and
test cost can also be reduced that will benefit service
providers.

In this proposed system, we assume an IPv4 ad-
dress and an IPv6 address are mapped one to one. Be-
cause the proposed system discussed in this paper is
for TaaS providers providing server resources to their
users, who are PaaS providers, SaaS providers, and/or
ASPs, we cannot design the system to share one IPv4
address by several IPv6 server nodes. We also don’t
consider implementing this requirement using appli-
cation level proxy solution, since service providers
have different requirements for their services, we can-
not limit the communication layer function to appli-
cation layers. This may be a problem considering
that the IPv4 address is scarce resource. However, we
need to use IPv4 address anyway if we want to sup-
port IPv4 clients. And also we need to map addresses
one to one if we want to provide services without any
modification on the client side. Our best effort to han-
dle this issue is that we do not allocate IPv4 addresses
to backend nodes to avoid non-necessary IPv4 use.

The version of an IP protocol used in the backend
network can be either IPv4 or IPv6. In the implemen-
tation shown in this paper, we use IPv6 as an inter-
nal protocol for the backend network considering the
trend of IPv6 transition of the whole Internet.

Figure 1 depicts the overview of the proposed sys-
tem. We said that the frontend nodes provide dual-
stack services to the client before, however precisely
speaking, these frontend nodes do not have any IPv4
addresses. The mapping information between IPv4
and IPv6 addresses are registered to each IPv4-IPv6
translator node and shared by all the translator nodes.
Since the mapping is done in the one to one manner,
no translator nodes need to keep session information
of ongoing communication. They can just translate
IP packets one by one. This makes it possible to place
multiple translator nodes easily to scale out the trans-
lation service when the amount of the traffic grows.

IPv4/IPv6
Internet

WIDE
backbone

Tokyo IPv4/IPv6
‘ NOC translator
nodes

Frontend and
backend nodes

Osaka O3FF

NOC ’ .
routing

Wide area
L2 network |

laaS service nodes

Figure 2: The actual network configuration of the proposed
TaaS system implemented and operated in the WIDE project
operation network.

This feature also contributes robustness of the trans-
lation system. When one of the translator nodes fails,
we can just remove the failed node from the system.
Since there is no shared session information among
translator nodes, the service is kept by the rest of the
translator nodes without any recovery operation.
Figure 2 shows the overview of the actual system
we are operating. The virtual machine resource man-
agement system located at the bottom of the figure is
the WIDE Cloud Controller (WCC) (WIDE project,
2011) developed by the WIDE project. The two net-
work operation centers (NOC) located at Tokyo and
Osaka are connected by a wide area layer 2 network
technology. The layer 2 network is a 10Gbps fiber
line dedicated to the WIDE project network opera-
tion. There are two layer 3 networks in Tokyo and
Osaka NOC whose network address spaces are same.
These two layer 3 networks are connected by the layer
2 link using VLAN technology. The translator nodes
are placed at each location. The routing information
of the IPv4 addresses used to provide IPv4 connec-
tivity to IPv4 clients is managed using the OSPFv3
routing protocol in the WIDE project backbone net-
work. Since all the translator nodes advertise the same
IPv4 address information using the equal cost strat-
egy, incoming traffic is distributed based on the entry
points of the incoming connections. The aggregated
IPv4 routing information is advertised to the Inter-
net using the BGP routing protocol. Any incoming
IPv4 connection requests from the Internet are routed
to the WIDE backbone based on the BGP informa-
tion, routed to one of the translator nodes based on
the OSPFv3 routing information, and finally routed
to the corresponding virtual machine based on the
static mapping table information stored in the trans-
lator nodes. The translation mechanism is described
in section 3.2. Failure of either Osaka or Tokyo NOC
will result in failure of the OSPFv3 routing infor-

309

CLOSER 2012 - 2nd International Conference on Cloud Computing and Services Science

IPv4 Internet

Proposed laaS system

IPv4 packet
Src: Clientg, , i
Dst: Serverp,, Relfer
1
A4

IPv6

server
IPv6 packet

Src: Pseudo prefix::Client,p, , /
Dst: Serverp, ¢

Serverp,, <=> Server p g

Mapping table

Figure 3: IPv4-IPv6 header translation procedure.

mation advertisement from the failed NOC, however,
thanks to the nature of a routing protocol, and one
to one stateless IPv4-IPv6 mapping mechanism, the
other NOC and translator will continue serving the
same address space to the Internet.

3.2 Design and Implementation of the
Translator Software

The server nodes in the TaaS backend system will see
all the communication from their clients as IPv6 con-
nections, since the backend system is operated in IPv6
only. All the IPv4 traffic from clients are intercepted
by the translator nodes and converted to IPv6 traffic.
Figure 3 shows the translation procedure used in the
translator software.

IPv4 address information bound to IPv6 addresses
of servers is stored in the mapping table. Based on the
table, the destination address of the IPv4 packet from
client nodes is converted to the proper IPv6 server ad-
dress. The source address of the IPv6 packet is con-
verted to a pseudo IPv6 address by embedding the
IPv4 address of the client node to the lower 32-bit of
the pseudo IPv6 address. The pseudo IPv6 address is
routed to the translator node inside the backend net-
work. The reply traffic from the server side is also
converted with the similar but opposite procedures.

The mechanism has been implemented using the
tun pseudo network interface device that is now pro-
vided as a part of the basic function of Linux and BSD
operating systems, originally developed by Maxim
Krasnyansky!. The tun network interface can cap-
ture incoming IP packets and redirect them to a user
space program. The user space program can also send
IP packets directly to the network by writing the raw
data of the IP packets to the tun interface. The transla-
tor nodes advertise the routing information of the IPv4

Thttp://vtun.sourceforge.net/tun/

310

addresses in the mapping table to receive all the traffic
sent to those IPv4 addresses. The incoming packets
are received via the tun network interface and passed
to the user space translator application. The translator
performs the procedure described in figure 3 to trans-
late the IPv4 packet to IPv6 packet. The converted
IPv6 packet is sent back to the tun network interface
and forwarded to the real server that is running with
IPv6 address only.

For the reverse direction, the similar procedure
is applied. Since the translator nodes advertise the
routing information of the pseudo IPv6 address that
includes the IPv4 address of the client node is ad-
vertised to the [aaS backend network, the translator
nodes receive all the reverse traffic. The nodes con-
vert those IPv6 packets into IPv4 packets using the
embedded IPv4 client address and mapping table in-
formation, and forward to the original IPv4 client.

This translator software is published as map646
open source software (Keiichi Shima and Wataru
Ishida, 2011), and anyone can use it freely.

4 SYSTEM EVALUATION

We implemented the proposed IaaS system as a part
of the WIDE project service network as shown in fig-
ure 2. By focusing on IPv6-only operation, we could
be free from IPv4 network management.

For the redundancy, we located two translator
nodes in different locations of the WIDE project core
network. We sometimes stop one of them for mainte-
nance. In that case, the other running node is working
as a backup node. We confirmed that the redundancy
mechanism is working automatically in a real opera-
tion.

The incoming traffic to IPv4 addresses are load-
balanced based on the BGP and OSPFv3 informa-

DESIGN, IMPLEMENTATION, AND OPERATION OF IPv6-ONLY IaaS SYSTEM WITH IPv4-IPv6 TRANSLATOR
FOR TRANSITION TOWARD THE FUTURE INTERNET DATACENTER

RTT [milisecond]

0 I I I I I I
0 20 40 60 80 100 120 140

Time [second]

Figure 4: RTT measurement in case of failure of a transla-
tor.

tion. For the outgoing traffic, currently a simple router
preference mechanism is used to choose an upstream
router from IPv6 servers. We are considering using
more advanced traffic engineering methods, such as
destination prefix based routing in near future.

Figure 4 shows the RTT measurement result from
an IPv4 client to an IPv6 server. Initially, both trans-
lator nodes are running. At time 35, we stopped the
router advertisement function of translator in Tokyo.
The traffic from outside to the cloud network still
goes to Tokyo node, but the returning traffic will be
routed to Osaka. At around time 65, we stopped rout-
ing function of the Tokyo node. After this point,
all the traffic goes to Osaka and returns from Os-
aka. We restarted the routing function of Tokyo node,
and restarted router advertisement at Tokyo node at
around time 90. Finally, all the traffic came back to
go through Tokyo node.

S PERFORMANCE EVALUATION

The obvious bottleneck of the system is the transla-
tor nodes where all the traffic must go through with
them. This section shows the evaluation result of the
translation software.

5.1 Translation Performance

The performance evaluation is done with the four dif-
ferent configurations shown in figure 5. The configu-
ration 1 and 2 (C1 and C2) are the translation cases us-
ing our translator software. Configuration 2 (C2) and
3 (C3) use normal IPv4 and IPv6 forwarding mecha-
nisms to compare the translation performance with no
translation cases.

Evaluation is done using two methods, one is the
ping program to measure RTT, and the other is the

C1
Translation (4>6)

c2
Translation (6>4)

C3
IPv4 forwarding

IPv4
Router

C4
IPv6 forwarding

IPv6
Router

Figure 5: The four configurations used in performance eval-
uation.

Table 1: Specification of nodes.

] | Client/Server | Translator/Router |
CPU Core2 Duo | Xeon L5630
3.16GHz 2.13GHz x 2
Memory | 4GB 24GB
OS Linux 3.0.0-12- | Linux 3.0.0-12-
server server
NIC Intel 82573L Intel 82574L

iperf program to measure bandwidth. All the results
in this experiment show the average value of 5 mea-
surement tries?. The computer nodes used in this per-
formance test are shown in table 1, and all the tests
were performed locally by directly connecting 3 com-
puters as shown in figure 5.

Figure 6 shows the result of the ping test. The RTT
values were 0.45ms in C1, 0.43ms in C2, 0.36ms in
C3, and 0.36ms in C4.

Figure 7 shows the result of the TCP band-
width measurement test. The bandwidth values were
923.8Mbps in C1, 922.8Mbps in C2, 938.0Mbps in
C3, and 925.8Mbps in C4.

Figure 8 shows the result of the UDP bandwidth
measurement test. We changed the transmission rate
of the sender side from 100Mbps to 1000Mbps with
100Mbps step, and measured how much bandwidth
was achieved at the receiver side. The maximum
bandwidth values were 786.0Mbps in C1, 802.0Mbps
in C2, 802.0Mbps in C3, and 802.0Mbps in C4.

2We didn’t record standard deviation of these tries, since
the results were stable.

311

CLOSER 2012 - 2nd International Conference on Cloud Computing and Services Science

0.7

0.6 |- i

RTT [ms]

Cl Cc2 C3 C4
Figure 6: RTT measurement result using the ping program.

1000

950 i

900

850

throughput [Mbps]

800

C1 c2 C3 C4

Figure 7: TCP bandwidth measurement using the iperf pro-
gram.

5.2 Comparison with Related Method

In this section, we compare the translation perfor-
mance of map646 to linuxnat64 (Julius Kriukas,
2012) which is one of the NAT64 implementations.
The main usage of NAT64 is to provide access to IPv4
servers from IPv6-only nodes. Because of the differ-
ence of the usage scenario, we located a server in the
IPv4 network side, and located a client in the IPv6
network side in this test (the C2 case). This is op-
posite to our proposed IaaS usage, however we think
the test can give us meaningful result in the sense of
performance comparison. In this test, we used Linux
2.6.32 instead of 3.0.0-12-server because linuxnat64
did not support Linux version 3 when we performed
this test. There is no big difference of IPv4/IPv6 for-
warding performance between Linux version 2 and 3.
We are planning to test again with a newer kernel once
linuxnat64 supports it.

Figure 9 shows the RTT measurement result. The
values are 0.55ms in the map646 case, and 0.39ms in
the linuxnat64 case.

Figure 10 shows the TCP bandwidth measurement
result. The bandwidth values were 903.2Mbps in
the map646 case, and 879.8Mbps in the linuxnat64
case. Figure 11 is the result of the UDP throughput
measurement. The maximum bandwidth values were
943.0Mbps in the map646 case, and 943.0Mbps in the

312

throughput [Mbps]

Figure 8: UDP bandwidth measurement using the iperf pro-

gram.

RTT [ms]

Figure 9: RTT comparison of map646 and linuxnat64.

bandwidth [Mbps]

Figure 10: TCP bandwidth comparison of map646 and lin-

uxnat64.

throughput [Mbps]

Figure 11: UDP bandwidth comparison of map646 and lin-

uxnat64.

1000

800

D
S
S

400

3%
(=
S

0.7

specified transfer rate[100Mbps]

06 [
05
04
03
02
0.1 [

1000

950

900

850

800

750

700

1000

800

600

400

map646

linuxnat64

map646

linuxnat64

map646 —— |
linuxnat64 —<—

specified transfer rate[100Mbps]

DESIGN, IMPLEMENTATION, AND OPERATION OF IPv6-ONLY IaaS SYSTEM WITH IPv4-IPv6 TRANSLATOR
FOR TRANSITION TOWARD THE FUTURE INTERNET DATACENTER

04
035 | i
03
0.25
02
0.15
0.1

005 |- -

Lookup and conversion time of one entry [us]

Number of mapping entries [thousand]

Lookup and conversion time of one entry [us]

0 20 40 60 80 100 120

Number of mapping entries [thousand]

Figure 12: Simulated result of mapping table lookup and address conversion overhead (left figure: 1000 to 26000 entries,

right figure: 1000 to 128000 entries).
linuxnat64 case.
5.3 Consideration

Based on the observation in section 4, we could
consider the proposed IaaS system could reduce the
maintenance cost, achieve redundancy and scalabil-
ity.

For the performance, as shown in figure 6, the
RTT degradation is around 0.07ms to 0.09ms. This
is reasonable because map646 is implemented as a
user space program while IPv4 and IPv6 forwarding
are implemented inside kernel. The other potential
reason of the degradation is a mapping entry lookup
overhead. In this experiment, we only defined two
mapping entries in map646. We have not measured
the overhead when there are a lot of mapping entries,
however we think it will not affect the total perfor-
mance because we are using a hash table for map-
ping information lookup. Figure 12 shows the sim-
ulated result of the lookup and address conversion
overhead for different number of mapping entries. In
our implementation, the size of the hash table is 1009.
From the left figure in figure 12, we can see the ta-
ble lookup and address conversion is done in almost
constant time when the size of the mapping entries is
less than 10000. When the size of the table grows,
the lookup and conversion time also grows linearly as
can see in the right figure in figure 12. The lookup and
conversion overhead of one entry is around 2 us when
there are 128 thousands of mapping entries. This
value is enough small that can be ignored compared
to the RTT degradation value. However we agree that
the real measurement of the performance degradation
with many mapping entries is an important topic, and
it is one of our future works.

The forwarding performance of map646 is 1.5%
to 1.6% worse than the normal forwarding case in the
TCP case, and 2.0% in the UDP case. We actually did

not see a big degradation in both TCP and UDP cases.
This means that the translation itself is enough fast to
process all the incoming packets. We can conclude
that the performance of the map646 translator soft-
ware is acceptable for the real operation. One thing
we have to note is that the test is done using 1Gbps
network interfaces. Because of recent advance of pro-
cessor technology, 1Gbps is not too fast any more. We
will perform further measurement in faster environ-
ment such as 10Gbps network interfaces.

From figure 10 and 11, we can see almost no
degradation compared to linuxnat64 implementation.
Map646 achieved even better performance than lin-
uxnat64 in the TCP case. We expected a slight degra-
dation in the map646 case, since linuxnat64 is imple-
mented as a kernel module while map646 is a user
space program, but the result did not show any big
difference. This result shows that the performance
highly depends on how the software is implemented.
As similar as the previous result, we will perform the
same test using 10Gbps networks to verify the per-
formance of map646 in a broader bandwidth environ-
ment as follow-up works.

We are actually operating several web servers as
a part of our daily operation. The examples of those
servers are the WIDE project web server’, the web
server of the Graduate School of Information Science
and Technology at the University of Tokyo Japan*, the
DNS server for the wide.ad.jp domain, the web server
for the Internet Conference, the KAME project web
server®, and so on. The real operation of these servers
also proves the system usability.

Finally we note some of the concerns of the pro-
posed system. This proposed system requires the

3http:/iwww.wide.ad jp/
“http://www.i.u-tokyo.ac.jp/
Shttp://www.internetconference.org/
Shttp://www.kame.net/

313

CLOSER 2012 - 2nd International Conference on Cloud Computing and Services Science

same number of IPv4 addresses as the frontend server
nodes. This is a trade-off between backward com-
patibility and IPv4 address usage efficiency. When
IPv4 becomes a minor protocol, then probably more
efficient IPv4 address sharing mechanisms for server
nodes may be deployed. The other concern is that
since the proposed mechanism translates addresses,
server nodes may require additional security consid-
erations such as filtering. When writing down filter
rules, the server operators need to pay attention to the
pseudo IPv6 address space that covers the entire [Pv4
address space.

6 CONCLUSIONS

In this paper, we proposed a new operation model for
IaaS service providers to adapt the future IPv6 Inter-
net. In the proposed system, we suggest the laaS ser-
vice providers should focus on a single stack opera-
tion as their backend network system. That will de-
crease the operation cost compared to the dual-stack
operation style. Considering recent trend of IP tech-
nology, we think IPv6 is a better choice for the back-
end network. We also designed a robust and scal-
able IPv4-IPv6 protocol translator software and im-
plemented it. The measurement result showed the
software has a slight degradation compared to the na-
tive forwarding cases, however, the performance was
acceptable. We deployed the idea in our real opera-
tion network. We are actually operating the IaaS sys-
tem and several real web servers as our daily service
infrastructure at this moment. With all these results
and observation, we conclude that the proposed IaaS
system is useful and feasible as one of the future TaaS
operation models.

REFERENCES

Bagnulo, M., Matthews, P., and van Beijnum, 1. (2011a).
Stateful NAT64: Network Address and Protocol
Translation from IPv6 Clients to IPv4 Servers. 1ETFE.
RFC6146.

Bagnulo, M., Sullivan, A., Matthews, P., and van Beijnum,
I. 2011b). DNS64: DNS Extensions for Network Ad-
dress Translation from IPv6 Clients to IPv4 Servers.
IETF. RFC6147.

Chen, G. (2011). NAT64 Operational Considerations.
IETF. draft-chen-v6ops-nat64-cpe-03.

Itojun Hagino, J. and Yamamoto, K. (2001). An IPv6-to-
1Pv4 Transport Relay Translator. IETF. RFC3142.

Kriukas, J. (2012). Linux NAT64 implementation.
http://sourceforge.net/projects/linuxnat64/.

314

Shima, K. and Ishida, W. (2011). map646: Map-
ping between IPv6 and IPv4 and vice versa.
https://github.com/keiichishima/map646/.

Kitamura, H. (1999). Entering the IPv6 Communication
World by the SOCKS-Based IPv6/IPv4 Translator. In
INET99.

Kitamura, H. (2001). SOCKS-based IPv6/IPv4 Gateway
Mechanism. IETE. RFC3089.

Mackay, M. and Edwards, C. (2006). A Comparative Per-
formance Study of IPv6 Transitioning Mechanisms
NAT-PT vs. TRT vs. DSTM. In NETWORKING
2006. Networking Technologies, Services, and Proto-
cols; Performance of Computer and Communication
Networks; Mobile and Wireless Communications Sys-
tems, volume 3976 of Lecture Notes in Computer Sci-
ence, pages 1125-1131. Springer Berlin / Heidelberg.

Mackay, M., Edwards, C., and Dunmore, M. (2003).
A Scenario-Based Review of IPv6 Transition Tools.
1EEE Internet Computing, 7(3):27-35.

Tsirtsis, G. and Srisuresh, P. (2000). Network Address
Translation - Protocol Translation (NAT-PT). IETF.
RFC2766.

Skoberne, N. and Ciglari¢, M. (2011). Practical Evaluation
of Stateful NAT64/DNS64 Transition. Advances in
Electrical and Computer Engineering, 11(3):49-54.

Waddington, D. G. and Chang, F. (2002). Realizing the
transition to ipv6. IEEE Communications Magazine,
40(6):138-147.

WIDE Project (2011).
http://wce.wide.ad.jp/.

WIDE Cloud Controller.

