
WIDE Technical-Report in 2007

wija: an Open and Extensible Messaging
Platform on the Internet

wide-tr-ideon-wija-platform-00.pdf

WIDE Project : http://www.wide.ad.jp/

If you have any comments on this document, please contact to ad@wide.ad.jp

wija: an Open and Extensible Messaging Platform on the Internet

Kenji Saito1

1Research Institute for Digital Media and Content, Keio University

1 Introduction

1.1 Purpose of Development

Our purpose is to assure freedom of experimentation for researchers, software developers and anyone in pursuit of
problems.

Openness, autonomy, extensibility, and resulted dependability/sustainability are the basic properties of the Internet,
which we would like to enhance. Although IP provides global reachability as a foundation for freely proposing, testing
and deploying new services, it is not an easy tool for creation to be used by general public. We are to provide an open
platform on top of TCP/IP, or another Internet over IP, at a level closer to human beings and human relations, so that
anyone can participate in creation of new communication on the Internet.

For this purpose, we have developed wija as a platform for experimenting with all possibilities of communication
on the Internet. This statement is not an exaggeration. The basic semantics of IP is that a message is reachable to a
destination specified by an identifier/locator. A communication protocol implementing this semantics should be able to
cover all possibilities of the Internet. This is why we have chosen to use an instant messaging protocol in our development,
which implements the basic semantics of the Internet at a human level.

1.2 Mission Statement

We have set forth the following mission statement:

M-1: Messaging Platform

We design wija to be a 1) cross-platform, 2) internationalized and 3) interoperable messaging software, 4) with
means for extending its functionalities.

The need for interoperability would require wija to conform to available centralized messaging protocols. But
centralization deprives users and developers of freedom of innovation. Centralization also have negative effects on
dependability and sustainability, because when a server is down, there is nothing outsiders of the domain can do
for recovering the services.

The design of wija should shift toward decentralization.

M-2: End-to-Endness

We design wija to be end-to-end oriented, so that problems in new applications are not to be solved by adding new
features to servers, but by communication among clients.

In the end, it should eliminate all dependencies on servers for maximal autonomy, dependability and sustainability.
This makes safe communication among clients particularly important.

M-3: Security

We design wija to be integrated with a foundation for secure communication, which must provide end-to-end
public key cryptography. wija should provide easy-to-use human interface for handling keys and certificates, and
encrypting/signing messages.

M-4: Freedom

We develop wija as a free software, without restrictions for further innovation by any parties.

1.3 Challenges

There are several challenges for completing the above missions:

C-1: Pathway to P2P (peer-to-peer)

One challenge is to set the pathway in the development for future elimination of dependencies on servers.

In addition to moving from centralized to more P2P-oriented protocols, we should also consider how we can eliminate
dependencies on the web in distributing software and providing support for users and developers.

C-2: User Friendliness

Another challenge is to design an easy-to-use integration with the foundation for secure communication so that
anyone can handle public key cryptography.

1

domain

in-band XML stream

out-of-band byte stream

alice

bob

XMPP

server

jabber.org media-art-online.org

jabber.jp

Figure 1: Overview of XMPP communication

2 Background – Jabber/XMPP

2.1 History

Jabber/XMPP is a set of open protocols for instant messaging and presence sharing.
It was first proposed as Jabber protocol in 1998. The first version of an open source Jabber server, jabberd, was released

in year 2000. JSF (Jabber Software Foundation) was established in 2001 to maintain the specifications and to support
their enhancements. In 2004, the core protocols of Jabber were standardized by IETF[46] as Extensible Messaging and
Presence Protocol (hence the name Jabber/XMPP).

Jabber/XMPP has been applied to many instant messaging systems including those developed by Apple, FedEx,
Google, Oracle and Sun Microsystems.

2.2 Characteristics

The characteristics of Jabber/XMPP in comparison with other instant messaging systems are as follows:

1. Openness

Specifications of Jabber/XMPP are open to public. Anyone can implement the protocols for free. Readers can find
lists of clients and servers at [19].

2. Autonomy

The network of Jabber/XMPP, as illustrated in Fig. 1, is close to that of SMTP[33] (Simple Mail Transfer Protocol);
mail servers can be set up by anyone without permissions from any parties once a domain name is registered, and
anyone can freely join the network of the global electronic mail system. Likewise, XMPP servers can be set up
without any permissions, and anyone can freely join the global network of the instant messaging and presence
sharing system.

3. Extensibility

Jabber/XMPP is an extensible set of protocols whose data descriptions are based on XML[6]. New features can be
incorporated without breaking the existing system. Extended protocols can be submitted to XSF (XMPP Standards
Foundation) as an XEP (XMPP Extension Protocols) for standardization. An XEP is approved as a standard after
feedbacks from implementers and reviews from XSF.

2.3 Communication Mechanism

In Jabber/XMPP, a peer is identified by a Jabber ID of the following form: user@domain/resource

A user name defines a user in a domain. A domain name is effectively the host name of the server to which the user
is connected with a client. A resource name distinguishes a communication session from others by the same user in the
same domain.

Fig. 1 illustrates the communication mechanism of Jabber/XMPP.
Like SMTP, clients need to talk to a server in order to have their messages reach the clients on the other ends (in-band

XML stream). It implies that Jabber/XMPP has such a weakness that communication becomes impossible when either
of the servers in between is down. Therefore, it is our intention that it will be replaced by a more P2P oriented technology
in the future to achieve the level of dependability and sustainability required for our purposes.

2

Jabber/XMPP also provides means for the clients to directly communicate (out-of-band byte stream), using protocols
such as SOCKS5[22]. It is recommended that clients use out-of-band communication whenever a large data is involved.
Still, in-band communication takes an important role in identifying the peers by their IP addresses and port numbers,
which can dynamically change; because of this, Jabber/XMPP provides an excellent way to rendezvous for applications
on the Internet.

3 Core Design

3.1 Primary Decisions

3.1.1 Development Language

We have chosen Java[43] as the development language for wija. We did it mainly for ease of implementing cross-platform
and internationalized software. In addition, we hoped that popularity of the language would attract more developers.

A drawback of selecting Java for a client-side application is the necessity for users to prepare the runtime environ-
ment. Although this has never been a problem for Mac OS X[4], on which Java 2 Standard Edition is pre-installed,
and increasingly less problematic for Linux[23] platforms because of GCJ[12] (The GNU Compiler for Java) and GNU
Classpath[13], this has always been a concern for Windows[25]. Section 6.2.1 discusses whether this decision has affected
user distribution.

3.1.2 Communication Protocol

We have chosen Jabber/XMPP as the communication protocol to start with, and then shift toward a more P2P-oriented
protocol for enhanced dependability and sustainability.

Many available instant messaging services today, such as MSN[26], AIM[2], Yahoo![49] and Skype[40] are proprietary.
They may become interoperable with one another, but even then, freedom of innovation will not be ensured for general
public.

We believe that Jabber/XMPP is the best available choice for the instant messaging protocol for our purposes because
of its openness, autonomy and extensibility as described in section 2.2. It also provides a foundation for experimenting
with P2P protocols using out-of-band byte streams.

3.1.3 Policy on Conforming to Standards

Conformity is important for assuring interoperability, and attracting potential users of existing messaging systems to use
wija. But at the same time, wija should be inherently experimental.

Our policy is that the end-to-end principle (M-2) should take higher priority over conformity to existing protocols,
unless the protocol is too popular in practice to ignore, in which case lack of interoperability is considered more harmful.

3.1.4 Cryptographic Framework

We have chosen OpenPGP[7] as the cryptographic framework because of its end-to-endness implied from the web of
trust[45], and GnuPG[44] as its implementation because it is a free software. We have designed wija to be integrated
with GnuPG (version 1.x), and to have a GUI front-end for handling all PGP operations.

It does not mean that wija ignores X.509[18]. Jabber/XMPP allows communication between a client and a server,
and between a server and another server encrypted by TLS[8] (Transport Layer Security). Without supporting this, wija
would lose compatibility with popular XMPP services as the one provided from Google, Google Talk[14].

By the above described policy, we have implemented TLS connection with XMPP servers using Java security frame-
work, so that users can log into Google Talk using wija (a big advantage to us for increasing the number of potential
users).

By the same policy, we have designed a direct end-to-end PGP public key exchange protocol over Jabber/XMPP as
described in section 4.3.2, in addition to key exchange using public key servers.

3.1.5 Distribution License

We have chosen GNU GPL[11] version 3 as the license under which wija is distributed.

3

Filer
Classes

:
WijaSystem

:

:

WijaStation

+getJabberSet():
 JabberSet
:

#_system: WijaSystem Jabber

:

:

Filer
Classes

:

WijaBot

:

WijaApp

:

JabberSet

:

PluginHost

:

XMLFiler
{abstract}

+write(): void
#provideXML(): XMLElement
#providedXML(x: XMLElement): void

JabberAccount

:

Application Core Persistent Storage

Jabber/XMPP protocols

JabberInput

+dequeue(t: long): XMLElement
JabberOutput

+enqueue(x: XMLElement): void
Application
with GUI

Set of
XMPP sessions

Common
Utilities

Persistent
Data

Single
XMPP session

Automated
Application

• PluginHost is an abstraction of a program that can be extended by plug-ins. A reference to the PluginHost object is passed to each plug-in
when the plug-in starts.

• wija (implemented as a WijaApp object) and wijabot (implemented as a WijaBot object) share core components with respect to communication
and storage.

• Since version 0.13, wija supports simultaneous multiple XMPP sessions with different Jabber IDs. All accesses to XMPP protocols need to go
through JabberSet object that provides search functions for the particular XMPP session in question.

Figure 2: Core components of wija in UML class diagram

3.2 Core Components

Fig. 2 is a UML[32] (Unified Modeling Language) class diagram for core components of wija.
We have developed software robot version of wija, which we call wijabot. wija and wijabot share most features

including hypertext sharing (section 4.2.1) and PGP public key exchange (section 4.3.2), but wijabot does not have direct
human interface while running. wijabot is extensible with plug-ins with the same architecture (section 4.1.4) as wija to
implement necessary automation to fit the purposes. wijabot has been used for providing services such as SOCKS5 proxy
(section 4.2.2) which do not require human intervention.

Java classes of wija are designed in such a way that wija and wijabot can share most of the code.
As a general rule, we have a class in the package of wija (org.media art online.wija) that implements a feature required

in wijabot (e.g. WijaStation), and a separate class provides user interface to be used in wija (e.g. WijaApp). Compared
to wija, only 3% of code was needed to implement wijabot.

4 Design for Missions

4.1 Design for M-1: Messaging Platform

4.1.1 Cross-platform Support

We have successfully made wija run on major operating system platforms such as Linux, Mac OS X and Windows
by writing the code in a platform-independent manner; differences among platforms not concealed by Java are mostly
abstracted within the core components. Fig. 3 shows a screenshot of wija and its plug-ins on Mac OS X.

There was a challenge in providing a cross-platform mechanism to link external plug-ins with wija. Our determination
has been that all executable files including those of external plug-ins must be able run on any platforms. Otherwise, we
would need more efforts on supporting multiple platforms, and features such as secure P2P update (section 4.2.3) would
have limited applications.

This linkage has been done by class loaders provided by the Java virtual machines. The mechanism requires the file

name of the JAR (Java ARchive) file of a plug-in to be named as follows: full-name-of-the-class.jar

For example, the plug-in file for i-WAT[38][24] is named “org.media art online.iwat.Iwat.jar”.
Upon start-up, wija searches for those files under the plugins directory inside the program directory. When it finds

one, it tries to load the class specified by the file name from the JAR file, which will result in loading all available referred
classes recursively.

4

Figure 3: Screenshot of wija and its plug-ins

An alternative is to store the name of the class as a property of the plug-in JAR file, but our design provides simpler
build process and retrieval of the class at runtime.

4.1.2 Internationalization

wija utilizes localization support of Java for internationalization. Currently all messages to users are provided in two
languages: English and Japanese. Developers can add properties files to support other languages.

4.1.3 Interoperability

Table 1 shows the list of XEPs implemented in wija to assure interoperability with other Jabber/XMPP messaging clients.

Table 1: XEPs Implemented in wija
XEP # Name

XEP-0020 Feature Negotiation[27]
XEP-0027 Current Jabber OpenPGP Usage[28]
XEP-0030 Service Discovery[16]
XEP-0045 Multi-User Chat[35]
XEP-0047 In-Band Bytestreams[20]
XEP-0065 SOCKS5 Bytestreams[41]
XEP-0082 Jabber Date and Time Profiles[34]
XEP-0086 Error Condition Mappings[31]
XEP-0095 Stream Initiation[29]
XEP-0096 File Transfer[30]
XEP-0115 Entity Capabilities[17]
XEP-0153 vCard-Based Avatars[36]

wija implements XEP-0115: Entity Capabilities so that a capability list is sent with presence from others, which is
stored locally, and checked before wija or its plug-ins try to send any non-standard messages to the peer. In this way,
wija can avoid obstructing communication when it is put among other clients in the instant messaging network.

Alternatively, we could use XEP-0030: Service Discovery to discover features supported by peers, but it would require
more messages and code.

4.1.4 Means for Extension

wija allows new functionality to be added as a plug-in. Fig. 4 is a UML class diagram for plug-in APIs of wija.
Many XEPs, such as XEP-0045: Multi-User Chat and XEP-0047: In-Band Bytestreams, are implemented as internal

plug-ins using the plug-in APIs, which has eased incremental development of wija. Those plug-ins are included in the
executable file of wija, so that they must not implement Updatable that specifies external executable files to update. This
is the reason why basic plug-in APIs have separated interfaces.

There are various extended plug-in interfaces that plug-ins may implement to provide certain types of functionalities.
Upon starting wija, all classes of found plug-ins are loaded first, and then the initialization code of each plug-in is

called. This allows a plug-in to access public methods and fields of other plug-ins, enabling developers to utilize existing
extensions for their own extensions.

5

Typical Internal
Plug-in

:

Typical External
Plug-in

:
<<interface>>

Updatable

+getSigningKeyFingerprint(): String
+getUpdateFile(sFile: String): File
+getUpdateXML(): XMLElement

<<interface>>
XMLPlugin

+processXML(x: XMLElement):
 boolean

<<interface>>
WijaSubResourceCapable

+getFile(sPath: String): File

<<interface>>
WijaSocketCapable

+getSocket(sName: String,
 sJID: String): WijaSocket

<<interface>>
WijaContactInterfaceBuilder

+createInterface():
 WijaContactInterface

<<interface>>
Plugin

+getID(): PluginID
+getKeys(): String[]
+getName(): String
+identifies(sID: String): boolean
+isExitAllowed(): boolean
+start(host: PluginHost): void

Basic Plug-in Interfaces Examples of Extended Plug-in Interfaces

If the plug-in supports
hypertext sharing

If the plug-in supports
general streaming

If the plug-in provides
UI on contact windows

• It is mandatory for any wija plug-ins to implement XMLPlugin, which can take XML messages not understood by the core components.

• It is highly recommended that an external plug-in implements Updatable, which is called when secure P2P update of the software (section 4.2.3)
is performed.

• Depending on the functionalities of a plug-in, it may implement some of extended plug-in interfaces, such as WijaSubResourceCapable for
hypertext sharing (section 4.2.1).

Figure 4: Plug-in APIs of wija in UML class diagram

XMPP network

Local machineRemote machine

wija web
browser

wija

func

local
data

xmpp://JabberID/func/data

To: JabberID
call func

to get data

• func is either an internal or external plug-in that implements WijaSubResourceCapable.

Figure 5: Hypertext transfer by wija

4.2 Design for M-2: End-to-Endness

4.2.1 Hypertext Sharing

Hypertext sharing provides an illusion of direct retrieval of data from a client at the other end, using a web browser via
HTTP[5][10] (Hypertext Transfer Protocol). This feature works even when both computers are inside their own private
networks or within firewalls, using SOCKS5 proxy as described in the section to follow.

This is a basis for many plug-ins to conduct end-to-end communication with peers. We have been experimenting

with the following form of URL: xmpp://JabberID/function/function-dependent to be fed to wija to initiate hypertext

transfer.
Hypertext sharing is realized by running a pseudo-HTTP server locally inside wija, and having the web browsers of

the user’s choice access the server on the localhost, as illustrated in Fig. 5. The server initiates streams for file transfers,
via a proxy service if necessary, and all data transfers are performed at the back as in-band or SOCKS5 byte streams.

4.2.2 Proxy Discovery

XEP-0065: SOCKS5 Bytestreams defines the roles of SOCKS5 proxy to intermediate two Jabber/XMPP entities which
cannot directly communicate with each other because they are inside private networks or firewalls. A SOCKS5 proxy is
usually implemented as a service of an XMPP domain which users must predetermine to use, but the end-to-end principle
(M-2) has urged us to design otherwise for wija.

All wija clients are designed to be capable of providing a proxy service. This feature can be turned on and off by the
users.

6

Figure 6: Update window

When a direct SOCKS5 connection is found impossible, wija searches for an available proxy service in its buddy list.
This allows users to set up a proxy service on some machine using an only regular distribution of wija1, and make the
service available to them by adding the entity onto their buddy lists.

There is a proxy service provided by us, whose Jabber ID is “proxy@media-art-online.org”, but every wija user has
liberty to set up their own proxies, or to become one themselves.

4.2.3 Secure P2P Update

Since version 0.12, wija allow users to update it or its plug-ins by directly downloading the new software from the
computers of their buddies if they use newer versions. The validity of the new software is automatically verified since
they are digitally signed by the system’s public key, which is imported the first time wija is started. The system’s public
key is stored in the internal file directory within the executable file of wija.

As Fig. 6 shows, the buddy from whom the software is downloaded can be selected by the user if there are multiple
candidates.

Secure P2P update is performed using hypertext sharing. The update feature is implemented as an internal plug-in
of wija that implements WijaSubResourceCapable. wija and external plug-ins register with the update plug-in so that
when the update module receive a request containing the identifier of those modules it passes the message for requesting
files to them. The actual transfer is performed by the hypertext transfer engine of wija.

It is important to log occurrences of this update for measurement purposes to find out the actual user distribution of
wija. When the wija’s executable JAR file has been received from a peer, wija records the Jabber ID of the peer. When
someone else receives the executable from the client, it sends “increment” message to the Jabber ID. Upon receiving the
message, wija records the incremented number to its local storage. The message is forwarded to their parents if they have
ones. Finally, those who have downloaded the new version directly from the web site (or the developer himself for that
matter) has the approximate number of peers who are using the new version.

It is possible to record the identities of those who have downloaded the new versions, but wija does not do so for
privacy protection reasons.

4.3 Design for M-3: Security

4.3.1 Integration with GnuPG

For providing cryptographic foundation, wija is designed to cover most functions of gpg command (version 1.4.x) in
graphical ways, as well as the features defined in XEP-0027: Current Jabber OpenPGP Usage.

Supported GnuPG features include signatures to files and verification of them, encrypting files and decrypting them,
importing and exporting public keys, searching in local key rings and in key servers, generation of key pairs, signature
to public keys, generation of revocation certificates, changing passphrases, deletion of public or secret keys, browsing
information on keys including photo IDs, adding and deleting user IDs and photo IDs, and sending public keys to and
receiving them from key servers.

1Although usually wijabot (section 3.2) is used for the purpose of setting up a SOCKS5 proxy.

7

1

2

3

1. A user can import public keys of others transferred via XMPP.

2. The imported keys are signed after checking their fingerprints. The keys appear in the visual representation of the key ring.

3. By double-clicking on the key, the detail information of the key is displayed.

Figure 7: Integration with GnuPG

4.3.2 Public Key Exchange

By the end-to-end principle (M-2), wija is designed to have a replacement feature for the function of key servers; public
key exchange can be made through Jabber/XMPP in-band XML streams.

Fig. 7 shows how this feature is integrated. wija tracks bindings between public keys and Jabber IDs, which are
initiated when users generate a new key pair. Or if wija finds just one key in user’s secret key ring, a binding is created
automatically. Users can import public keys of others by selecting peers on their buddy lists.

Managing a web of trust is hard, especially for novices of using PGP. wija provides some experimental ways to
represent key fingerprints as illustrated in Fig. 7, as color and sound patterns, to ease the burden of fingerprint checking.

4.3.3 Encapsulation of GnuPG Features

The functionalities of GnuPG are accessed from wija by calling gpg command through exec() method of the Java runtime
module. The functionalities are encapsulated as a Java class named org.media art online.gnupg.GnuPG, so that plug-in
writers need not to be bothered by the detail of using GnuPG. The package org.media art online.gnupg provides Java
classes to abstract GnuPG data structures such as keys, user IDs and photo IDs.

4.4 Design for M-4: Freedom

This mission is about providing freedom of innovation to developers, which we have been challenging through practices
described in section 5.

The pluggable architecture has made wija extensible by allowing anyone to add new functionality, but there is another
reason for the design: retractability. Because wija is experimental in its nature, some features may not be found socially
fit. If a feature is seen that way, in light of copyright laws, for example, the plug-in is safely discarded from the system
without affecting the entire platform of wija, so that other experiments can go on.

5 Practice

5.1 Development Environment

5.1.1 Build Toolkit

wija’s developer team has been using Perforce[42] for concurrent version management, and Apache Ant[3] for building
software.

8

We have configured a machine to perform nightly builds so that any files added locally and missing from the Perforce
depot or any discrepancies among modules, especially ones between wija and its plug-ins, are detected the next morning.

5.1.2 Documentation Toolkit

Documentation on the web are expressed in what we call OmniDocument format which we have developed as an extension
of RD for Ruby language. By using the format, not only it is easier to write, but also the resulted web pages are ensured
to be displayable by the built-in browsing functionality of Java runtime.

The help pages of wija have been generated using the toolkit.

5.2 Public and Developer Relations

5.2.1 Publicities

We have been advertising wija via a number of media.
We have set up an official web site of wija for general users, and a Wiki site[47] for developers has also been made

open to public.
wija is among the lists of Jabber/XMPP clients at the JSF web site and an entry in Wikipedia[48]. It has its own

entry in Wikipedia at the following URL:

• http://en.wikipedia.org/wiki/wija

We have introduced wija in special articles in the January 2006 issue of the monthly JavaWorld[37] and in the October
2006 issue of the quarterly UNIX magazine[39], both in Japan.

5.2.2 Communities

As for more community oriented activities, we have set up community pages for wija at SNS (Social Networking Service)
sites mixi[9] and GREE[15]. There is a wija developers mailing list for discussions.

Since February 2007, we have been using SourceForge.net for development management and software distribution at
the following project page:

• http://sourceforge.net/projects/wija/

5.3 Public Releases of wija

5.3.1 Releases

wija has been available at the following URL:

• http://www.media-art-online.org/wija/

Table 2 is the chronological list of releases of wija. Statistical analysis on the publicity of the recent versions is found
in section 6.2.

Table 2: Chronological list of wija releases
Date Version Description

Jun 14, 2004 version 0.03 Pre-public release version.
Jun 14, 2004 version 0.04 Initial public release.
Jun 21, 2004 version 0.05 Improved data exchange.
Jul 15, 2004 version 0.06 Many improvements for usability.
Sep 29, 2004 version 0.07 Key rings, photo IDs and Spot-lite.
Jan 3, 2005 version 0.08 Hypertext sharing and Tunes.
Feb 2, 2005 version 0.09 Many improvements for usability.
Apr 5, 2005 version 0.10 Variance over time (i-WAT) and PaNIC storyboard.
Dec 6, 2005 version 0.11 GnuPG 1.4.x support and new barter currencies.
Jan 3, 2007 version 0.12 MSN/Google account support, automatic update, etc.
Sep 8, 2007 version 0.13 Simultaneous multiple sessions, Overlay GHC (initial release), etc.

We have also been distributing wija from SourceForge.net since version 0.12.

9

5.3.2 Lessons Learned

These public releases have been made as we learn by the feedbacks from users.
Supports for key rings management and photo IDs (version 0.07), for example, resulted from our observation that

users had difficulty in handling public keys.
Variance over time feature of i-WAT and PaNIC storyboard (version 0.10), new barter currencies (version 0.11),

MSN/Google account support (version 0.12), and simultaneous multiple sessions (version 0.13) resulted from explicit
requests from users that are now managed on our SourceForge.net project pages.

6 Results and Evaluation

6.1 Effects on People

6.1.1 Effects to Research Activities

Most existing plug-ins of wija have been required from researchers’ needs, and were quickly implemented on wija to help
their research activities.

So far, wija and plug-ins have helped one Ph.D. degree (i-WAT), 3 masters degrees (Tunes, POCOMZ and related
proto-typing) and one bachelor’s degree (PaNIC). Spot-lite and Cutie X were also proposed at first as undergraduate
projects.

We believe that for the researchers, wija has been expanding their universe of what they can do.

6.1.2 Relations with Users

Because of i-WAT, wija has already been in use by many of the WAT System community members as the reference
platform of the currency exchange.

Many of such users are not specialized in computing, which makes them perfect for returning feedbacks on the usability
of wija. Many improvements as described in section 5.3.2 owe feedbacks from them.

6.2 Statistics

6.2.1 Web Server Access Logs

Fig. 8 shows the frequencies of successful downloads of wija during the period between December 2005 and January 20,
20072.

Dec

2005

version 0.0x

2006 2007

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

0
50

10
0

15
0

20
0

25
0

version 0.11

0
50

10
0

15
0

20
0

25
0 version 0.12

0
50

10
0

15
0

20
0

25
0

Figure 8: Successful downloads of wija Dec/2005 ∼ Jan/2007

The number of downloads in January 2007 shows that transition to the succeeding version has been successful.
However, there remain mysterious downloads of prior versions of wija, especially in June and August 2006. Further
investigating the server record has shown that many downloads were initiated from the same IP addresses in a very short
periods, suggesting that those cases are accesses from some kind of software robots.

2The data for December 2006 has been mostly lost because of an accident resulted from replacing the web server.

10

.exe
.zip

.dmg

.tar.gz +logos

src

wija011.exe 781
wija011.zip 261

wija011.dmg 408
wija011.tar.gz 321

wija011x-logos0yy.{exe|zip} 412
wija011src.tar.gz 204

Total 2,387

Figure 9: Successful downloads of wija version 0.11 (∼ Jan/20/2007)

Fig. 9 shows the number of successful downloads of wija version 0.11 for different platforms.
After a little over one year from its release, wija version 0.11 had 2,387 successful downloads. 44% (.exe + .zip) of

them were for Windows platform, followed by 17% each for distribution of LOGOS and for Mac OS X. About 9% were
downloads of the source code.

Choice of Java as development language did not seem to affect the user distribution as much as we feared.

6.2.2 XMPP Server Records

Some information can be collected from the XMPP server we have been operating.
The number of XMPP users at media-art-online.org, which we believe can approximate the number of wija users, is

335 as of January 22, 2007.

6.2.3 P2P Update Log

The number from the XMPP server can be misleading because users can easily start and stop using wija. Substantial
number of users recorded on the server may not be using wija currently.

To obtain more accurate measurement, we have been investigating a way to use the logging of secure P2P update.
Soon after the release of wija version 0.12 on January 3, 2007, we have built a minor update called version 0.12a, and
have been distributing the version only through the secure P2P update.

We discovered that 47 users have successfully downloaded and used version 0.12a before another minor update on
April 26, 2007. We believe that it approximates the size of the user cluster of wija around us.

6.3 Evaluation

6.3.1 Evaluation of Challenges

Our view is that although challenges remain in many ways, our efforts so far have been successful as follows:

C-1: Pathway to P2P

In many development items, we have successfully eliminated necessity of XMPP servers supporting certain features.

Elimination of necessity of web servers is beginning. Distribution of the software is partially done in a P2P way.

C-2: User Friendliness

In large part, this remains to be a challenge.

However, GnuPG integration seems to be appreciated by users; to our best knowledge, wija is the only software
written in Java (thus naturally cross-platform) that provides GUI frontend for GnuPG. Some novel approaches

11

to enhance usability have been experimented such as direct end-to-end exchange of public keys and audio/visual
representation of fingerprints. As a casual observation, many non-technical users are signing their presences and
using encrypted messages, which seems to be indicating that the design has been successful.

6.3.2 Evaluation of Missions

Our view is that except the above remaining challenges, our missions have been complete as described below.

M-1: Messaging Platform

wija is a platform that runs on multiple OS platforms. It is internationalized in such a way that every message to
user is provided in both English and Japanese, and it provides means for incorporating additional languages. It has
been helping innovations as a tool for researchers and students pursuing their new applications of the Internet.

M-2: End-to-Endness

Most features, except vCard sharing (including avatars) that is too popular among Jabber/XMPP clients to design
otherwise, do not require specific functionality of XMPP servers.

We have also eliminated the need for public key servers.

M-3: Security

wija is integrated with GnuPG, and provides means for signing and encrypting messages, as well as safely updating
the software by downloading them from peers.

M-4: Freedom

wija has been distributed from our site under GNU GPL version 3, and third-party sites are also redistributing
wija.

Secure P2P update uses the system’s public key to verify the new software, which might sound as if we are the only
ones who can develop wija and external plug-ins. But the key is stored within the original executable file a user
trusted to download by other means. Therefore, this does not restrict freedom of developers distributing modified
versions of wija with their own system’s public keys, and allowing users to maintain the line of software by the
secure P2P update.

7 Related Work

There are a lot of messaging clients which support Jabber/XMPP, but we only refer to Psi[21] and Adium X[1], for their
cross-platform support and extensibility, respectively.

There are surprisingly small number, if not none at all, of projects that make use of extensibility of Jabber/XMPP
protocols other than wija.

7.1 Psi

Psi is a popular Jabber/XMPP messaging client which supports multiple platforms. Although Psi is based on the same
set of protocols, the policy is quite different from that of wija, as quoted below.

“The goal of the Psi project is to create a powerful, yet easy-to-use Jabber/XMPP client that tries to strictly adhere
to the XMPP drafts and Jabber JEPs3. This means that in most cases, Psi will not implement a feature unless there is
an accepted standard for it in the Jabber community.”

7.2 Adium X

Adium X is a popular messaging client for Mac OS X that supports multiple protocols through use of libgaim library.
Like wija, Adium X has its plug-in architecture, and many of the essential features of the software are provided by

plug-ins.
To our best knowledge, Adium X is not known as a platform for extension of what we can do over the Internet, except

Gizmo, an IP telephony plug-in.

3XEPs were formerly known as JEPs, standing for Jabber Extension Proposals.

12

8 Future Work

We intend to further brush up the design of wija so that it will be more usable and graphically pleasing. We also intend
to support more protocols (via gateways). We believe that we need those improvements to attract more attentions from
researchers and general public, so that wija will become a more valuable tool for research and for living.

Meanwhile, we intend to develop further on the P2P aspects of wija. We intend to put more efforts on Overlay
GHC as a tool for research on declarative programming of overlay networking. The insights we will acquire from the
experience will be used upon the design of wija to replace XMPP with P2P protocols (we will probably make those
protocols switchable).

9 Conclusions

We have developed wija, an open and extensible messaging platform on the Internet to assure freedom of experimentation
for researchers, software developers and anyone in pursuit of problems, in the form of a Jabber/XMPP client.

Although this work is still in progress, we believe that we have achieved many aspects of the original mission statement.
In particular, we have avoided dependencies on servers in many scenes of our development; public key exchange, proxy
discovery, and so on, not to mention the level of ease we have achieved in handling public key cryptography.

In the hope that this software project will be an asset for advancement of software science and networking, we will
continue our development.

References

[1] Adium team: Adium. Hypertext document. Available electronically at http://www.adiumx.com/.

[2] AOL LLC: Instant Messenger - AIM, as of 2007. Available electronically at http://www.aim.com/.

[3] Apache Ant Project: Apache Ant. Hypertext document. Available electronically at http://ant.apache.org/.

[4] Apple Computer, Inc.: Apple - Mac OS X, as of 2007. Available electronically at http://www.apple.com/macosx/.

[5] Berners-Lee, T., Fielding, R. T., and Nielsen, H. F.: Hypertext Transfer Protocol – HTTP/1.0, May 1996. RFC
1945.

[6] Bray, T., Paoli, J., C.M.Sperberg-McQueen, and Maler, E.: Extensible Markup Language (XML) 1.0 (Second Edi-
tion), October 2000. W3C Recommendation. Available electronically at http://www.w3.org/TR/REC-xml.

[7] Callas, J., Donnerhacke, L., Finney, H., and Thayer, R.: OpenPGP Message Format, November 1998. RFC 2440.

[8] Dierks, T. and Allen, C.: The TLS Protocol Version 1.0, January 1999. RFC 2246.

[9] eMercury, Inc.: Social Networking Site [mixi], since 1995. Available electronically at http://mixi.jp/ (in Japanese).

[10] Fielding, R. T., Gettys, J., Mogul, J. C., Nielsen, H. F., Masinter, L., Leach, P. J., and Berners-Lee, T.: Hypertext
Transfer Protocol – HTTP/1.1, June 1999. RFC 2616.

[11] Free Software Foundation, Inc.: GNU General Public License, 1991. Hypertext document. Available electronically
at http://www.gnu.org/licenses/ gpl.html.

[12] Free Software Foundation, Inc.: GCJ: The GNU Compiler for Java - GNU Project, as of 2007. Available electronically
at http://gcc.gnu.org/java/.

[13] Free Software Foundation, Inc.: GNU Classpath - GNU Project, as of 2007. Available electronically at
http://www.gnu.org/software/classpath/.

[14] Google, Inc.: Google Talk, as of 2007. Available electronically at http://www.google.com/talk/.

[15] GREE: Home - GREE, since 2004. Available electronically at http://gree.jp/ (in Japanese).

[16] Hildebrand, J., Millard, P., Eatmon, R., and Saint-Andre, P.: XEP-0030: Service Discovery, March 2005.

[17] Hildebrand, J. and Saint-Andre, P.: XEP-0115: Entity Capabilities, October 2004.

[18] Housley, R., Ford, W., Polk, T., and Solo, D.: Internet X.509 Public Key Infrastructure Certificate and CRL Profile,
January 1999. RFC 2459.

13

[19] Jabber Software Foundation: Jabber: Open Instant Messaging and a Whole Lot More, Powered by XMPP, since
1999. Available electronically at http://www.jabber.org/.

[20] Karneges, J.: XEP-0047: In-Band Bytestreams (IBB), December 2003.

[21] Karneges, J. and Psi Team: Psi Jabber Client. Hypertext document. Available electronically at http://psi-im.org/.

[22] Leech, M.: SOCKS Protocol Version 5, March 1996. RFC 1928.

[23] Linux Online, Inc.: The Linux Home Page at Linux Online, as of 2007. Available electronically at
http://www.linux.org/.

[24] Media Art Online: i-WAT. Hypertext document. Available electronically at http://www.media-art-online.org/iwat/.

[25] Microsoft Corporation: Microsoft Windows Family Home Page, as of 2007. Available electronically at
http://www.microsoft.com/windows/.

[26] Microsoft Corporation: MSN.com, as of 2007. Available electronically at http://www.msn.com/.

[27] Millard, P.: XEP-0020: Feature Negotiation, May 2004.

[28] Muldowney, T.: XEP-0027: Current Jabber OpenPGP Usage, March 2004.

[29] Muldowney, T., Miller, M., and Eatmon, R.: XEP-0095: Stream Initiation, April 2004.

[30] Muldowney, T., Miller, M., and Eatmon, R.: XEP-0096: File Transfer, April 2004.

[31] Norris, R. and Saint-Andre, P.: XEP-0086: Error Condition Mappings, February 2004.

[32] OMG: Unified Modeling Language (UML), version 2.1.1, February 2007. OMG Specification. Available electronically
at http://www.omg.org/ technology/documents/formal/uml.htm.

[33] Postel, J. B.: Simple Mail Transfer Protocol, August 1982. RFC 821.

[34] Saint-Andre, P.: XEP-0082: Jabber Date and Time Profiles, May 2003.

[35] Saint-Andre, P.: XEP-0045: Multi-User Chat, September 2005.

[36] Saint-Andre, P.: XEP-0153: vCard-Based Avatars, August 2006.

[37] Saito, K.: Examining the Charms of Jabber, an Extensible Instant Messaging Protocol, JavaWorld, (2006). in
Japanese.

[38] Saito, K.: i-WAT: The Internet WAT System – An Architecture for Maintaining Trust and Facilitating Peer-to-Peer
Barter Relationships –, PhD Thesis, Graduate School of Media and Governance, Keio University, February 2006.

[39] Saito, K.: Local Production, Local Consumption P2P Network, UNIX magazine, (2006). in Japanese.

[40] Skype Limited: Skype - internet calls, as of 2007. Available electronically at http://www.skype.com/.

[41] Smith, D., Miller, M., and Saint-Andre, P.: XEP-0065: SOCKS5 Bytestreams, November 2004.

[42] Software, P.: Perforce Software – The Fast Software Configuration Management System, 1996, 2005. Hypertext
document. Available electronically at http://www.perforce.com/.

[43] Sun Microsystems, Inc.: Java Technology, as of 2007. Available electronically at http://java.sun.com/.

[44] The Free Software Foundation: The GNU Privacy Guard. Hypertext document. Available electronically at
http://www.gnupg.org/.

[45] The Free Software Foundation: The GNU Privacy Handbook. Available electronically at http://www.gnupg.org/.

[46] The Internet Engineering Task Force: IETF Home Page. Available electronically at
http://www.ietf.org/.

[47] WIDE Project IDEON Working Group: wija Project. Hypertext document. Available electronically at
http://member.wide.ad.jp/wg/ideon/?en%2F Projects%2Fwija.

[48] Wikipedia: List of Jabber clients - Wikipedia, the free encyclopedia, as of 2007. Available electronically at
http://en.wikipedia.org/wiki/ List of Jabber clients.

[49] Yahoo! Inc.: Yahoo! Messenger, as of 2007. Available electronically at http://messenger.yahoo.com/.

14

Copyright Notice

Copyright c© WIDE Project (2007). All Rights Reserved.

15

	wide-tr-coverpage.pdf
	wide-tr-ideon-wija-platform-00.pdf
	Introduction
	Purpose of Development
	Mission Statement
	Challenges

	Background -- Jabber/XMPP
	History
	Characteristics
	Communication Mechanism

	Core Design
	Primary Decisions
	Development Language
	Communication Protocol
	Policy on Conforming to Standards
	Cryptographic Framework
	Distribution License

	Core Components

	Design for Missions
	Design for M-1: Messaging Platform
	Cross-platform Support
	Internationalization
	Interoperability
	Means for Extension

	Design for M-2: End-to-Endness
	Hypertext Sharing
	Proxy Discovery
	Secure P2P Update

	Design for M-3: Security
	Integration with GnuPG
	Public Key Exchange
	Encapsulation of GnuPG Features

	Design for M-4: Freedom

	Practice
	Development Environment
	Build Toolkit
	Documentation Toolkit

	Public and Developer Relations
	Publicities
	Communities

	Public Releases of wija
	Releases
	Lessons Learned

	Results and Evaluation
	Effects on People
	Effects to Research Activities
	Relations with Users

	Statistics
	Web Server Access Logs
	XMPP Server Records
	P2P Update Log

	Evaluation
	Evaluation of Challenges
	Evaluation of Missions

	Related Work
	Psi
	Adium X

	Future Work
	Conclusions

