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Abstract 

The pace of research on peer-to-peer (P2P) networking in the last five years warrants a critical 

survey. P2P has the makings of a disruptive technology - it can aggregate enormous storage and 

processing resources while minimizing entry and scaling costs. Failures are common amongst massive 

numbers of distributed peers, though the impact of individual failures may be less than in conventional 

architectures. Thus the key to realizing P2P’s potential in applications other than casual file sharing is 

robustness. 

P2P search methods are first couched within an overall P2P taxonomy. P2P indexes for simple key 

lookup are assessed, including those based on Plaxton trees, rings, tori, butterflies, de Bruijn graphs 

and skip graphs. Similarly, P2P indexes for keyword lookup, information retrieval and data 

management are explored. Finally, early efforts to optimize range, multi-attribute, join and 

aggregation queries over P2P indexes are reviewed. Insofar as they are available in the primary 

literature, robustness mechanisms and metrics are highlighted throughout. However, the low-level 

mechanisms that most affect robustness are not well isolated in the literature. Furthermore, there has 

been little consensus on robustness metrics. Recommendations are given for future research. 
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1. Introduction 

Peer-to-peer (P2P) networks are those that exhibit three characteristics: self-organization, symmetric 

communication and distributed control [1]. A self-organizing P2P network “automatically adapts to the arrival, 

departure and failure of nodes” [2]. Communication is symmetric in that peers act as both clients and servers. It has 

no centralized directory or control point. USENET servers or BGP peers have these traits [3] but the emphasis here 

is on the flurry of research since 2000. Leading examples include Gnutella [4], Freenet [5], Pastry [2], Tapestry [6], 

Chord [7], the Content Addressable Network (CAN) [8], pSearch [9] and Edutella [10]. Some have suggested that 

peers are inherently unreliable [11]. Others have assumed well-connected, stable peers [12]. 

This critical survey of P2P academic literature is warranted, given the intensity of recent research. At the time of 

writing, one research database lists over 5,800 P2P publications [13]. One vendor surveyed P2P products and 

deployments [14]. There is also a tutorial survey of leading P2P systems [15]. DePaoli and Mariani recently 

reviewed the dependability of some early P2P systems at a high level [16]. The need for a critical survey was 

flagged in the peer-to-peer research group of the Internet Research Task Force (IRTF) [17].

P2P is potentially a disruptive technology with numerous applications, but this potential will not be realized 

unless it is demonstrated to be robust. A massively distributed search technique may yield numerous practical 

benefits for applications [18]. A P2P system has potential to be more dependable than architectures relying on a 

small number of centralized servers. It has potential to evolve better from small configurations - the capital outlays 

for high performance servers can be reduced and spread over time if a P2P assembly of general purpose nodes is 

used. A similar argument motivated the deployment of distributed databases – one thousand, off-the-shelf PC 

processors are more powerful and much less expensive than a large mainframe computer [19]. Storage and 

processing can be aggregated to achieve massive scale. Wasteful partitioning between servers or clusters can be 

avoided. As Gedik and Liu put it, if P2P is to find its way into applications other than casual file sharing, then 

reliability needs to be addressed [20]. 

The taxonomy of Figure 1 divides the entire body of P2P research literature along four lines: search, storage, 

security and applications. This survey concentrates on search aspects. A P2P search network consists of an 

underlying index (Sections 2 to 4) and queries that propagate over that index (Section 5). 
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This survey is concerned with two questions. The first is “How do P2P search networks work?” This foundation 

is important given the pace and breadth of P2P research in the last five years. In Section 2, we classify indexes as 

local, centralized and distributed. Since distributed indexes are becoming dominant, they are given closer attention 

in Sections 3 and 4. Section 3 gives a two-tiered comparison of distributed P2P indexes for simple key lookup. The 

top tier explores their overall origins (Section 3.1) and robustness (Section 3.2). The second tier (Sections 3.3 to 3.8) 

divides them by index structure, in particular Plaxton trees, rings, tori, butterflies, de Bruijn graphs and skip graphs. 

Section 4 reviews distributed P2P indexes supporting keyword lookup (Section 4.1) and information retrieval 

(Section 4.2). Section 5 probes the embryonic research on P2P queries, in particular, range queries (Section 5.1), 

multi-attribute queries (Section 5.2), join queries (Section 5.3) and aggregation queries (Section 5.4).  

The second question is “How robust are P2P search networks?” Insofar as it is available in the research literature, 

we tease out the robustness mechanisms and metrics throughout Sections 2 to 5. Unfortunately, robustness is often 

more sensitive to low-level design choices than it is to the broad P2P index structure, yet these underlying design 

choices are seldom isolated in the primary literature [229]. Furthermore, there has been little consensus on P2P 

robustness metrics (Section 3.2). Section 6 gives recommendations to address these important gaps. 

1.1. Related Disciplines 

Peer-to-peer research draws upon numerous distributed systems disciplines. Networking researchers will 

recognize familiar issues of naming, routing and congestion control. P2P designs need to address routing and 

security issues across network region boundaries [152]. Networking research has traditionally been host-centric. The 

web’s Universal Resource Identifiers are naturally tied to specific hosts, making object mobility a challenge [216]. 

P2P work is data-centric [230]. P2P systems for dynamic object location and routing have borrowed heavily from 

the distributed systems corpus. Some have used replication, erasure codes and Byzantine agreement [111]. Others 

have used epidemics for durable peer group communication [39]. 

Similarly, P2P research is set to benefit from database research [231]. Database researchers will recognize the 

need to reapply Codd’s principle of physical data independence, that is, to decouple data indexes from the 

applications that use the data [23]. It was the invention of appropriate indexing mechanisms and query optimizations 
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that enabled data independence. Database indexes like B+ trees have an analog in P2P’s distributed hash tables 

(DHTs). Wide-area, P2P query optimization is a ripe, but challenging, area for innovation. 

More flexible distribution of objects comes with increased security risks. There are opportunities for security 

researchers to deliver new methods for availability, file authenticity, anonymity and access control [25]. Proactive 

and reactive mechanisms are needed to deal with large numbers of autonomous, distributed peers. To build robust 

systems from cooperating but self-interested peers, issues of identity, reputation, trust and incentives need to be 

tackled. Although it is beyond the scope of this paper, robustness against malicious attacks also ought to be 

addressed [195]. 

Possibly the largest portion of P2P research has majored on basic routing structures [18], where research on 

algorithms comes to the fore. Should the overlay be “structured” or “unstructured”? Are the two approaches 

competing or complementary? Comparisons of the “structured” approaches – hypercubes, rings, toroids, butterflies, 

de Bruijn and skip graphs – have weighed the amount of routing state per peer and the number of links per peer 

against overlay hop-counts. While “unstructured” overlays initially used blind flooding and random walks, 

overheads usually trigger some structure, for example super-peers and clusters. 

P2P applications rely on cooperation between these disciplines. Applications have included file sharing, 

directories, content delivery networks, email, distributed computation, publish-subscribe middleware, multicasting, 

and distributed authentication. Which applications will be suited to which structures? Are there adaptable 

mechanisms which can decouple applications from the underlying data structures? What are the criteria for selection 

of applications amenable to a P2P design [1]? 

Robustness is emphasized throughout the survey. We are particularly interested in two aspects. The first, 

dependability, was a leading design goal for the original Internet [232]. It deserves the same status in P2P. The 

measures of dependability are well established: reliability, a measure of the mean-time-to-failure (MTTF); 

availability, a measure of both the MTTF and the mean-time-to-repair (MTTR)1; maintainability; and safety [233]. 

The second aspect is the ability to accommodate variation in outcome, which one could call adaptability. Its 

measures have yet to be defined. In the context of the Internet, it was only recently acknowledged as a first class 

                                                          
1

Traditionally, availability = MTTF / (MTTF + MTTR)
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requirement [234]. In P2P, it means planning for the tussles over resources and identity. It means handling different 

kinds of queries and accomodating changeable application requirements with minimal intervention. It means 

“organic scaling” [22], whereby the system grows gracefully, without a priori data center costs or architectural 

breakpoints. 

In the following section, we discuss one notable omission from the taxonomy of P2P networking in Figure 1 - 

routing. 

1.2. Structured and Unstructured Routing 

P2P routing algorithms have been classified as “structured” or “unstructured”. Early instantiations of Gnutella 

were unstructured – keyword queries were flooded widely [235]. Napster [236] had decentralized content and a 

centralized index, so only partially satisfies the distributed control criteria for P2P systems. Early structured 

algorithms included Plaxton, Rajaraman and Richa (PRR) [30], Pastry [2], Tapestry [31], Chord [7] and the Content 

Addressable Network [8]. Mishchke and Stiller recently classified P2P systems by the presence or absence of 

structure in routing tables and network topology [237]. 

Some have cast unstructured and structured algorithms as competing alternatives. Unstructured approaches have 

been called “first generation”, implicitly inferior to the “second generation” structured algorithms [2, 31]. When 

generic key lookups are required, these structured, key-based routing schemes can guarantee location of a target 

within a bounded number of hops [23]. The broadcasting unstructured approaches, however, may have large routing 

costs, or fail to find available content [22]. Despite the apparent advantages of structured P2P, several research 

groups are still pursuing unstructured P2P. 

There have been two main criticisms of structured systems [61]. The first relates to peer transience, which in turn 

affects robustness. Chawathe et al. opined that highly transient peers are not well supported by DHTs [61]. P2P 

systems often exhibit "churn", with peers continually arriving and departing. One objection to concerns about highly 

transient peers is that many applications use peers in well-connected parts of the network. The Tapestry authors 

analysed the impact of churn in a network of 1000 nodes [31]. Others opined that it is possible to maintain a robust 

DHT at relatively low cost [238]. Very few papers have quantitatively compared the resilience of structured 

systems. Loguinov, Kumar et al claimed that there were only two such works [24, 36].  
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The second criticism of structured systems is that they do not support keyword searches and complex queries as 

well as unstructured systems. Given the current file-sharing deployments, keyword searches seem more important 

than exact-match key searches in the short term. Paraphrased, “most queries are for hay, not needles” [61]. 

More recently, some have justifiably seen unstructured and structured proposals as complementary, not 

competing [239]. Their starting point was the observation that unstructured flooding or random walks are inefficient 

for data that is not highly replicated across the P2P network. Structured graphs can find keys efficiently, irrespective 

of replication. Castro et al proposed Structella, a hybrid of Gnutella built on top of Pastry [239]. Another design 

used structured search for rare items and unstructured search for massively replicated items [54].  

However, the “structured versus unstructured routing” taxonomy is becoming less useful, for two reasons, Firstly, 

most “unstructured” proposals have evolved and incorporated structure. Consider the classic “unstructured” system, 

Gnutella [4]. For scalability, its peers are either ultrapeers or leaf nodes. This hierarchy is augmented with a query 

routing protocol whereby ultrapeers receive a hashed summary of the resource names available at leaf-nodes. 

Between ultrapeers, simple query broadcast is still used, though methods to reduce the query load here have been 

considered [240]. Secondly, there are emerging schema-based P2P designs [59], with super-node hierarchies and 

structure within documents. These are quite distinct from the structured DHT proposals. 

Given that most, if not all, P2P designs today assume some structure, a more instructive taxonomy would 

describe the structure. In this survey, we use a database taxonomy in lieu of the networking taxonomy, as suggested 

by Hellerstein, Cooper and Garcia-Molina [23, 241]. The structure is determined by the type of index. Queries 

feature in lieu of routing. The DHT algorithms implement a “semantic-free index” [216]. They are oblivious of 

whether keys represent document titles, meta-data, or text. Gnutella-like and schema-based proposals have a 

“semantic index”. 

1.3. Indexing and Searching 

Index engineering is at the heart of P2P search methods. It captures a broad range of P2P issues, as demonstrated 

by the Search/Index Links model [241]. As Manber put it, “the most important of the tools for information retrieval 

is the index—a collection of terms with pointers to places where information about documents can be found”[242]. 

Sen and Wang noted that a “P2P network” usually consists of connections between hosts for application-layer 
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signaling, rather than for the data transfer itself [243]. Similarly, we concentrate on the “signaled” indexes and 

queries. 

Our focus here is the dependability and adaptability of the search network. Static dependability is a measure of 

how well queries route around failures in a network that is normally fault-free. Dynamic dependability gives an 

indication of query success when nodes and data are continually joining and leaving the P2P system. An adaptable 

index accommodates change in the data and query distribution. It enables data independence, in that it facilitates 

changes to the data layout without requiring changes to the applications that use the data [23]. An adaptable P2P 

system can support rich queries for a wide range of applications. Some applications benefit from simple, semantic-

free key lookups [244]. Others require more complex, Structured Query Language (SQL)-like queries to find 

documents with multiple keywords, or to aggregate or join query results from distributed relations [22]. 

2. Index Types 

A P2P index can be local, centralized or distributed. With a local index, a peer only keeps the references to its 

own data, and does not receive references for data at other nodes. The very early Gnutella design epitomized the 

local index (Section 2.1). In a centralized index, a single server keeps references to data on many peers. The classic 

example is Napster (Section 2.2). With distributed indexes, pointers towards the target reside at several nodes. One 

very early example is Freenet (Section 2.3). Distributed indexes are used in most P2P designs nowadays – they 

dominate this survey. 

P2P indexes can also be classified as non-forwarding and forwarding. When queries are guided by a non-

forwarding index, they jump to the node containing the target data in a single hop. There have been semantic and 

semantic-free one-hop schemes [138, 245, 246]. Where scalability to a massive number of peers is required, these 

schemes have been extended to two-hops [247, 248]. More common are the forwarding P2Ps where the number of 

hops varies with the total number of peers, often logarithmically. The related tradeoffs between routing state, lookup 

latency, update bandwidth and peer churn are critical to total system dependability. 
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2.1. Local Index 

P2Ps with a purely local data index are becoming rare. In such designs, peers flood queries widely and only index 

their own content. They enable rich queries – the search is not limited to a simple key lookup. However, they also 

generate a large volume of query traffic with no guarantee that a match will be found, even if it does exist on the 

network. For example, to find potential peers on the early instantiations of Gnutella, ‘ping’ messages were broadcast 

over the P2P network and the ‘pong’ responses were used to build the node index. Then small ‘query’ messages, 

each with a list of keywords, are broadcast to peers which respond with matching filenames [4]. 

There have been numerous attempts to improve the scalability of local-index P2P networks. Gnutella uses fixed 

time-to-live (TTL) rings, where the query’s TTL is set less than 7-10 hops [4]. Small TTLs reduce the network 

traffic and the load on peers, but also reduce the chances of a successful query hit. One paper reported, perhaps a 

little too bluntly, that the fixed “TTL-based mechanism does not work” [67] To address this TTL selection problem, 

they proposed an expanding ring, known elsewhere as iterative deepening [29]. It uses successively larger TTL 

counters until there is a match. The flooding, ring and expanding ring methods all increase network load with 

duplicated query messages. A random walk, whereby an unduplicated query wanders about the network, does 

indeed reduce the network load but massively increases the search latency. One solution is to replicate the query k 

times at each peer. Called random k-walkers, this technique can be coupled with TTL limits, or periodic checks with 

the query originator, to cap the query load [67]. Adamic, Lukose et al. suggested that the random walk searches be 

directed to nodes with higher degree, that is, with larger numbers of inter-peer connections [249]. They assumed that 

higher-degree peers are also capable of higher query throughputs. However without some balancing design rule, 

such peers would be swamped with the entire P2P signaling traffic. In addition to the above approaches, there is the 

‘directed breadth-first’ algorithm [29]. It forwards queries within a subset of peers selected according to heuristics 

on previous performance, like the number of successful query results. Another algorithm, called probabilistic 

flooding, has been modeled using percolation theory [250]. 

Several measurement studies have investigated locally indexed P2Ps. Jovanovic noted Gnutella’s power law 

behaviour [70]. Sen and Wang  compared the performance of Gnutella, Fasttrack [251] and Direct Connect [243, 

252, 253]2. At the time, only Gnutella used local data indexes. All three schemes now use distributed data indexes, 

                                                          
2

Bearshare and Limewire clients use Gnutella. KaZaa and Grokster clients use FastTrack. When Sen and Wang wrote their 2002 paper, Morpheus also used 
FastTrack.
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with hierarchy in the form of Ultrapeers (Gnutella), Super-Nodes (FastTrack) and Hubs (Direct Connect). It was 

found that a very small percentage of peers have a very high degree and that the total system dependability is at the 

mercy of such peers. While peer up-time and bandwidth were heavy-tailed, they did not fit well with the Zipf 

distribution. Fortunately for Internet Service Providers, measures aggregated by IP prefix and Autonomous System 

(AS) were more stable than for individual IP addresses. A study of University of Washington traffic found that 

Gnutella and Kazaa together contributed 43% of the university’s total TCP traffic [254]. They also reported a heavy-

tailed distribution, with 600 external peers (out of 281,026) delivering 26% of Kazaa bytes to internal peers. 

Furthermore, objects retrieved from the P2P network were typically three orders of magnitude larger than web 

objects – 300 objects contributed to almost half of the total outbound Kazaa bandwidth. Others reported Gnutella’s 

topology mismatch, whereby only 2-5% of P2P connections link peers in the same AS, despite over 40% of peers 

being in the top 10 ASes [65]. Together these studies underscore the significance of multimedia sharing 

applications. They motivate interesting caching and locality solutions to the topology mismatch problem. 

These same studies bear out one main dependability lesson: total system dependability may be sensitive to the 

dependability of high degree peers. The designers of Scamp translated this observation to the design heuristic, “have 

the degree of each node be of nearly equal size” [153]. They analyzed a system of N peers, with mean degree 

c.log(N), where link failures occur independently with probability . If δ>0 is fixed and c>(1+δ)/(-log(ε)) then the 

probability of graph disconnection goes to zero as N→∞. Otherwise, if c<(1-δ)/(-log(ε)) then the probability of 

disconnection goes to one as N→∞. They presented a localizer, which finds approximate minima to a global 

function of peer degree and arbitrary link costs using only local information. The Scamp overlay construction 

algorithms could support any of the flooding and walking routing schemes above, or other epidemic and 

multicasting schemes for that matter. Resilience to high churn rates was identified for future study. 

2.2. Central Index 

Centralized schemes like Napster [236] are significant because they were the first to demonstrate the P2P 

scalability that comes from separating the data index from the data itself. Ultimately 36 million Napster users lost 

their service not because of technical failure, but because the single administration was vulnerable to the legal 

challenges of record companies [255]. 
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There has since been little research on P2P systems with central data indexes. Such systems have also been called 

‘hybrid’ since the index is centralized but the data is distributed. Yang and Garcia-Molina devised a four-way 

classification of hybrid systems [256]: unchained servers, where users whose index is on one server do not see other 

servers’ indexes; chained servers, where the server that receives a query forwards it to a list of servers if it does not 

own the index itself; full replication, where all centralized servers keep a complete index of all available metadata; 

and hashing, where keywords are hashed to the server where the associated inverted list is kept. The unchained 

architecture was used by Napster, but it has the disadvantage that users do not see all indexed data in the system. 

Strictly speaking, the other three options illustrate the distributed data index, not the central index. The chained 

architecture was recommended as the optimum for the music-swapping application at the time. The methods by 

which clients update the central index were classified as batch or incremental, with the optimum determined by the 

query-to-login ratio. Measurements were derived from a clone of Napster called OpenNap[257]. Another study of 

live Napster data reported wide variation in the availability of peers, a general unwillingness to share files (20-40% 

of peers share few or no files), and a common understatement of available bandwidth so as to discourage other peers 

from sharing one’s link [202].  

Influenced by Napster’s early demise, the P2P research community may have prematurely turned its back on 

centralized architectures. Chawathe, Ratnasamy et al. opined that Google and Yahoo demonstrate the viability of a 

centralized index. They argued that “the real barriers to Napster-like designs are not technical but legal and 

financial” [61]. Even this view may be a little too harsh on the centralized architectures – it implies that they always 

have an upfront capital hurdle that is steeper than for distributed architectures. The closer one looks at scalable 

‘centralized’ architectures, the less the distinction with ‘distributed’ architectures seems to matter. For example, it is 

clear that Google’s designers consider Google a distributed, not centralized, file system [258]. Google demonstrates 

the scale and performance possible on commodity hardware, but still has a centralized master that is critical to the 

operation of each Google cluster. Time may prove that the value of emerging P2P networks, regardless of the 

centralized-versus-distributed classification, is that they smooth the capital outlays and remove the single points of 

failure across the spectra of scale and geographic distribution. 

2.3. Distributed Index 

An important early P2P proposal for a distributed index was Freenet [5, 71, 259]. While its primary emphasis was 

the anonymity of peers, it did introduce a novel indexing scheme. Files are identified by low-level “content-hash” 

keys and by “secure signed-subspace” keys which ensure that only a file owner can write to a file while anyone can 
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read from it. To find a file, the requesting peer first checks its local table for the node with keys closest to the target. 

When that node receives the query, it too checks for either a match or another node with keys close to the target. 

Eventually, the query either finds the target or exceeds time-to-live (TTL) limits. The query response traverses the 

successful query path in reverse, depositing a new routing table entry (the requested key and the data holder) at each 

peer. The insert message similarly steps towards the target node, updating routing table entries as it goes, and finally 

stores the file there. Whereas early versions of Gnutella used breadth-first flooding, Freenet uses a more economic 

depth-first search [260]. 

An initial assessment has been done of Freenet’s robustness. It was shown that in a network of 1000 nodes, the 

median query path length stayed under 20 hops for a failure of 30% of nodes. While the Freenet designers 

considered this as evidence that the system is “surprisingly robust against quite large failures” [71], the same 

datapoint may well be outside meaningful operating bounds. How many applications are useful when the first 

quartile of queries have path lengths of several hundred hops in a network of only 1000 nodes, per Figure 4 of [71]? 

To date, there has been no analysis of Freenet’s dynamic robustness. For example, how does it perform when nodes 

are continually arriving and departing? 

There have been both criticisms and extensions of the early Freenet work. Gnutella proponents acknowledged the 

merit in Freenet’s avoidance of query broadcasting [261]. However, they are critical on two counts: the exact file 

name is needed to construct a query; and exactly one match is returned for each query. P2P designs using DHTs, per 

Section 3, share similar characteristics – a precise query yields a precise response. The similarity is not surprising 

since Freenet also uses a hash function to generate keys. However, the query routing used in the DHTs has firmer 

theoretical foundations. Another difference with DHTs is that Freenet will take time, when a new node joins the 

network, to build an index that facilitates efficient query routing. By the inventor’s own admission, this is damaging 

for a user’s first impressions [262]. It was proposed to download a copy of routing tables from seed nodes at startup, 

even though the new node might be far from the seed node. Freenet’s slow startup motivated Mache, Gilbert et al. to 

amend the overlay after failed requests and to place additional index entries on successful requests – they claim 

almost an order of magnitude reduction in average query path length [260]. Clarke also highlighted the lack of 

locality or bandwidth information available for efficient query routing decisions [262]. He proposed that each node 

gather response times, connection times and proportion of successful requests for each entry in the query routing 

table. When searching for a key that is not in its own routing table, it was proposed to estimate response times from 
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the routing metrics for the nearest known keys and consequently choose the node that can retrieve the data fastest. 

The response time heuristic assumed that nodes close in the key space have similar response times. This assumption 

stemmed from early deployment observations that Freenet peers seemed to specialize in parts of the keyspace – it 

has not been justified analytically. Kronfol drew attention to Freenet’s inability to do keyword searches [263]. He 

suggested that peers cache lists of weighted keywords in order to route queries to documents, using Term Frequency 

Inverse Document Frequency (TFIDF) measures and inverted indexes (Section 4.2.1). With these methods, a peer 

can route queries for simple keyword lists or more complicated conjunctions and disjunctions of keywords. 

Robustness analysis and simulation of Kronfol’s proposal remains open. 

The vast majority of P2P proposals in following sections rely on a distributed index.  

3. Semantic-Free Index 

Many of today’s distributed network indexes are semantic. The semantic index is human-readable. For example, 

it might associate information with other keywords, a document, a database key or even an administrative domain. It 

makes it easy to associate objects with particular network providers, companies or organizations, as evidenced in the 

Domain Name System (DNS). However, it can also trigger legal tussles and frustrate content replication and 

migration [216]. 

Distributed Hash Tables (DHTs) have been proposed to provide semantic-free, data-centric references. DHTs 

enable one to find an object’s persistent key in a very large, changing set of hosts. They are typically designed for 

[23]: 

a) low degree. If each node keeps only a small number of transport connections to other nodes, the impact of high 

node arrival and departure rates is contained;  

b) low diameter. The hops and delay introduced by the extra indirection are minimized;  

c) greedy routing. Nodes independently calculate a short path to the target. At each hop, the query moves closer 

to the target; and 

d) robustness. A path to the target can be found even when links or nodes fail. 

3.1. Origins 

To understand the origins of recent DHTs, one needs to look to three contributions from the 1990s. The first two - 

Plaxton, Rajaraman, and Richa (PRR) [30] and Consistent Hashing [49] - were published within one month of each 
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other. The third, the Scalable Distributed Data Structure (SDDS) [52], was curiously ignored in significant 

structured P2P designs despite having some similar goals [2, 6, 7]. It has been briefly referenced in other P2P papers 

[46, 264-267]. 

PRR is the most recent of the three. It influenced the designs of Pastry [2], Tapestry [6] and Chord [7]. The value 

of PRR is that it can locate objects using fixed-length routing tables [6]. Objects and nodes are assigned a semantic-

free address, for example a 160 bit key. Every node is effectively the root of a spanning tree. A message routes 

toward an object by matching longer address suffixes, until it encounters either the object’s root node or another 

node with a ‘nearby’ copy. It can route around link and node failure by matching nodes with a related suffix. The 

scheme has several disadvantages [6]: global knowledge is needed to construct the overlay; an object’s root node is 

a single point of failure; nodes cannot be inserted and deleted; there is no mechanism for queries to avoid congestion 

hot spots. 

Karger et al. introduced Consistent Hashing in the context of the web caching problem [49]. Web servers could 

conceivably use standard hashing to place objects across a network of caches. Clients could use the approach to find 

the objects. For normal hashing, most object references would be moved when caches are added or deleted. On the 

other hand, Consistent Hashing is “smooth” – when caches are added or deleted, the minimum number of object 

references move so as to maintain load balancing. Consistent Hashing also ensures that the total number of caches 

responsible for a particular object is limited. Whereas Litwin’s Linear Hashing (LH*) scheme requires ‘buckets’ to 

be added one at a time in sequence [50], Consistent Hashing allows them to be added in any order [49]. There is an 

open Consistent Hashing problem pertaining to the fraction of items moved when a node is inserted [165]. Extended 

Consistent Hashing was recently proposed to randomize queries over the spread of caches to significantly reduce the 

load variance [268]. Interestingly, Karger [49] referred to an older DHT algorithm by Devine that used “a novel 

autonomous location discovery algorithm that learns the buckets’ locations instead of using a centralized directory” 

[51]. 

In turn, Devine’s primary point of reference was Litwin’s work3 on SDDSs and the associated LH* algorithm 

[52]. An SDDS satisfies three design requirements: files grow to new servers only when existing servers are well 

loaded; there is no centralized directory; the basic operations like insert, search and split never require atomic 

                                                          
3

Both Litwin and Devine were at UC-Berkeley in 1993.
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updates to multiple clients. Honicky and Miller suggested the first requirement could be considered a limitation 

since expansion to new servers is not under administrative control [266]. Litwin recently noted numerous 

similarities and differences between LH* and Chord [269]. He found that both implement key search. Although LH* 

refers to clients and servers, nodes can operate as peers in both. Chord ‘splits’ nodes when a new node is inserted, 

while LH* schedules ‘splits’ to avoid overload. Chord requests travel O(logN) hops, while LH* client requests need 

at most two hops to find the target. Chord stores a small number of ‘fingers’ at each node. LH* servers store N/2 to 

N addresses while LH* clients store 1 to N addresses. This tradeoff between hop count and the size of the index 

affects system robustness, and bears striking similarity to recent one- and two-hop P2P schemes in Section 2. The 

arrival and departure of LH* clients does not disrupt LH* server metadata at all. Given the size of the index, the 

arrival and departure of LH* servers is likely to cause more churn than that of Chord nodes. Unlike Chord, LH* has 

a single point of failure, the split coordinator. It can be replicated. Alternatively it can be removed in later LH* 

variants, though details have not been progressed for lack of practical need [269]. 

3.2. Dependability Comparisons 

Before launching into a critique of the various DHT geometries (Sections 3.3 to 3.8), we first make four overall 

observations about their dependability. Dependability metrics fall into two categories: static dependability, a 

measure of performance before recovery mechanisms take over; and dynamic dependability, for the most likely case 

in massive networks where there is continual failure and recovery (“churn”).  

Observation A: Static dependability comparisons show that no O(log N) DHT geometry is significantly more 

dependable than the other O(log N) geometries. Gummadi et al. compared the tree, hypercube, butterfly, ring, XOR 

and hybrid geometries. In such geometries, nodes generally know about O(log N) neighbors and route to a 

destination in O(log N) hops, where N is the number of nodes in the overlay. Gummadi et al. asked “Why not the 

ring?”. They concluded that only the ring and XOR geometries permit flexible choice of both neighbors and 

alternative routes [24]. Loguinov et al. added the de Bruijn graph to their comparison [36]. They concluded that the 

classical analyses, for example the probability that a particular node becomes disconnected, yield no major 

differences between the resilience of Chord, CAN and de Bruijn graphs. Using bisection width (the minimum edge 

count between two equal partitions) and path overlap (the likelihood that backup paths will encounter the same 

failed nodes or links as the primary path), they argued for the superior resilience of the de Bruijn graph. In short, 

ring, XOR and de Bruijn graphs all permit flexible choice of alternative paths, but only in de Bruijn are the alternate 

paths independent of each other [36]. 
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Observation B: Dynamic dependability comparisons show that DHT dependability is sensitive to the 

underlying topology maintenance algorithms. Li et al. give the best comparison to date of several leading DHTs 

during churn [270]. They relate the disparate configuration parameters of Tapestry, Chord, Kademlia, Kelips and 

OneHop to fundamental design choices. For each of these DHTs, they plotted the optimal performance in terms of 

lookup latency (milliseconds) and fraction of failed lookups. The results led to several important insights about the 

underlying algorithms, for example: increasing routing table size is more cost-effective than increasing the rate of 

periodic stabilization; learning about new nodes during the lookup process sometimes eliminates the need for 

stabilization; parallel lookups reduce latency due to timeouts more effectively than faster stabilization. Similarly, 

Zhuang et al. compared keep-alive algorithms for DHT failure detection [271]. Such algorithmic comparisons can 

significantly improve the dependability of DHT designs. 

In Figure 2, we propose a taxonomy for the topology maintenance algorithms that influence dependability. The 

algorithms can be classified by how nodes join and leave, how they first detect failures, how they share information 

about topology updates, and how they react when they receive information about topology updates. 

Observation C: Most DHTs use O(log N) geometries to suit ephemeral nodes. The O(1) hop DHTs suit stable 

nodes and deserve more research attention. Most of the DHTs in Sections 3.3 to 3.8 assume that nodes are 

ephemeral, with expected lifetimes of one to two hours. They therefore mostly use an O(log N) geometry. The 

common assumption is that maintenance of full routing tables in the O(1) hop DHTs will consume excessive 

bandwidth when nodes are continually joining and leaving. The corollary is that, when they run on stable 

infrastructure servers [277], most of the DHTs in Sections 3.3 to 3.8 are less than optimal - lookups take many more 

hops than necessary, wasting latency and bandwidth budgets. The O(1) hop DHTs suit stable deployments and high 

lookup rates. For a churning 1024-node network, Li et al. concluded that OneHop is superior to Chord, Tapestry, 

Kademlia and Kelips in terms of latency and lookup success rate [270]. For a 3000-node network, they concluded 

that “OneHop is only preferable to Chord when the deployment scenario allows a communication cost greater than 

20 bytes per node per second” [270]. This apparent limitation needs to be put in context. They assumed that each 

node issues only one lookup every 10 minutes and has a lifetime of only 60 minutes. It seems reasonable to expect 

that in some deployments, nodes will have a lifetime of weeks or more, a maintenance bandwidth of tens of kilobits 

per second, and a load of hundreds of lookups per second. O(1) hop DHTs are superior in such situations. OneHop 

can scale at least to many tens of thousands of nodes [247]. The recent O(1) hop designs [247, 274] are vastly 
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outnumbered by the O(log N) DHTs in Sections 3.3 to 3.8. Research on the algorithms of Figure 2 will also yield 

improvements in the dependability of the O(1) hop DHTs. 

Observation D: Although not yet a mature science, the study of DHT dependability is helped by recent 

simulation and formal development tools. While there are recent reference architectures [273, 277], much of the 

DHT literature in Sections 3.3 to 3.8 does not lend itself to repeatable, comparative studies. The best comparative 

work to date [270] relies on the P2PSIM simulator [278]. At the time of writing, it supports more DHT geometries 

than any other simulator. As the study of DHTs matures, we can expect to see the simulation emphasis shift from 

geometric comparison to a comparison of the algorithms of Figure 2. 

P2P correctness proofs generally rely on less than complete formal specifications of system invariants and events 

[7, 45, 279]. Li and Plaxton expressed concern that “when many joins and leaves happen concurrently, it is not clear 

whether the neighbor tables will remain in a ‘good’ state” [47]. While acknowledging that guaranteeing consistency 

in a failure prone network is impossible, Lynch, Malkhi et al. sketched amendments to the Chord algorithm to 

guarantee atomicity [280]. More recently, Gilbert, Lynch et al. gave a new algorithm for atomic read/write memory 

in a churning distributed network, suggesting it to be a good match for P2P [281]. Lynch and Stoica show in an 

enhancement to Chord that lookups are provably correct when there is a limited rate of joins and failures [282]. 

Fault Tolerant Active Rings is a protocol for active joins and leaves that was formally specified and proven using B-

method tools [283]. A good starting point for a formal DHT development would be the numerous informal API 

specifications [22, 284, 285]. Such work could be informed by other efforts to formally specify routing invariants 

[286, 287]. 

In Sections 3.3 to 3.8, we introduce the main geometries for simple key lookup and survey their robustness 

mechanisms. 

3.3. Plaxton Trees 

Work began in March 2000 on a structured, fault-tolerant, wide-area Dynamic Object Location and Routing 

(DOLR) system called Tapestry [6, 155]. While DHTs fix replica locations, a DOLR API enables applications to 

control object placement [31]. Tapestry’s basic location and routing scheme follows Plaxton, Rajaraman and Richa 

(PRR) [30], but it remedies PRR’s robustness shortcomings described in Section 3.1. Whereas each object has one 

root node in PRR, Tapestry uses several to avoid a single point of failure. Unlike PRR, it allows nodes to be inserted 
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and deleted. Whereas PRR required a total ordering of nodes, Tapestry uses ‘surrogate routing’ to incrementally

choose root nodes. The PRR algorithm does not address congestion, but Tapestry can put object copies close to 

nodes generating high query loads. PRR nodes only know of the nearest replica, whereas Tapestry nodes enable 

selection from a set of replicas (for example to retrieve the most up to date). To detect routing faults, Tapestry uses 

TCP timeouts and UDP heartbeats for detection, sequential secondary neighbours for rerouting, and a ‘second 

chance’ window so that recovery can occur without the overhead of a full node insertion. Tapestry’s dependability 

has been measured on a testbed of about 100 machines and on simulations of about 1000 nodes. Successful routing 

rates and maintenance bandwidths were measured during instantaneous failures and ongoing churn [31].

Pastry, like Tapestry, uses Plaxton-like prefix routing [2]. As in Tapestry, Pastry nodes maintain O(log N) 

neighbours and route to a target in O(log N) hops. Pastry differs from Tapestry only in the method by which it 

handles network locality and replication [2]. Each Pastry node maintains a ‘leaf set’ and a ‘routing table’. The leaf 

set contains l/2 node IDs on either side of the local node ID in the node ID space. The routing table, in row r column 

c, points to the node ID with the same r-digit prefix as the local node, but with an r+1 digit of c. A Pastry node 

periodically probes leaf set and routing table nodes, with periodicity of Tls and Trt and a timeout Tout. Mahajan, 

Castry et al. analysed the reliability versus maintenance cost tradeoffs in terms of the parameters l, Tls, Trt, and Tout

[288]. They concluded that earlier concerns about excessive maintenance cost in a churning P2P network were 

unfounded, but suggested followup work for a wider range of reliability targets, maintenance costs and probe 

periods. Rhea Geels et al. concluded that existing DHTs fail at high churn rates [289]. Building on a Pastry 

implementation from Rice University, they found that most lookups fail to complete when there is excessive churn. 

They conjectured that short-lived nodes often leave the network with lookups that have not yet timed out, but no 

evidence was provided to confirm the theory. They identified three design issues that affect DHT performance under 

churn: reactive versus periodic recovery of peers; lookup timeouts; and choice of nearby neighbours. Since reactive 

recovery was found to add traffic to already congested links, the authors used periodic recovery in their design. For 

lookup timeouts, they advocated an exponentially weighted moving average of each neighbour’s response time, over 

alternative fixed timeout or ‘virtual coordinate’ schemes. For selection of nearby neighbours, they found that ‘global 

sampling’ was more effective than simply sampling a ‘neighbour’s neighbours’ or ‘inverse neighbours’. Castro, 

Costa et al. have refuted the suggestion that DHTs cannot cope with high churn rates [290]. By implementing 

methods for continuous detection and repair, their MSPastry implementation achieved shorter routing paths and a 

maintenance overhead of less than half a message per second per node. 
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There have been more recent proposals based on these early Plaxton-like schemes. Kademlia uses a bit-wise 

exclusive or (XOR) metric4 for the ‘distance’ between 160 bit node identifiers [45]. Each node keeps a list of contact 

nodes for each section of the node space that is between 2i and 2i+1 from itself (0 i<160). Longer-lived nodes are 

deliberately given preference on this list – it has been found in Gnutella that the longer a node has been active, the 

more likely it is to remain active. Like Kademlia, Willow uses the XOR metric [32]. It implements a Tree 

Maintenance Protocol to ‘zipper’ together broken segments of a tree. Where other schemes use DHT routing to 

inefficiently add new peers, Willow can merge disjoint or broken trees in O(log N) parallel operations. 

3.4. Rings 

Chord is the prototypical DHT ring, so we first sketch its operation. Chord maps nodes and keys to an identifier 

ring [7, 34]. Chord supports one main operation: find a node with the given key. It uses Consistent Hashing (Section 

3.1) to minimize disruption of keys when nodes join and leave the network. However, Chord peers need only track 

O(log N) other peers, not all peers as in the original consistent hashing proposal [49]. It enables concurrent node 

insertions and deletions, improving on PRR. Compared to Pastry, it has a simpler join protocol. Each Chord peer 

tracks its predecessor, a list of successors and a finger table. Using the finger table, each hop is at least half the 

remaining distance around the ring to the target node, giving an average5 lookup hop count of (½)log2N. Each Chord 

node runs a periodic stabilization routine that updates predecessor and successor pointers to cater for newly added 

nodes. All successors of a given node need to fail for the ring to fail. Although a node departure could be treated the 

same as a failure, a departing Chord node first notifies the predecessor and successors, so as to improve 

performance. 

In their definitive paper, Chord’s inventors critiqued its dependability under churn [34]. They provided proofs on 

the behaviour of the Chord network when nodes in a stable network fail, stressing that such proofs are inadequate in 

the general case of a perpetually churning network. An earlier paper had posed the question, “For lookups to be 

successful during churn, how regularly do the Chord stabilization routines need to run?” [291]. Stoica, Morris et al. 

modeled a range of node join/departure rates and stabilization periods for a Chord network of 1000 nodes. They 

measured the number of timeouts (caused by a finger pointing to a departed node) and lookup failures (caused by 

nodes that temporarily point to the wrong successor during churn). They also modelled the ‘lookup stretch’, the ratio 

                                                          
4 To be more precise, Maymounkov and Mazieres make comparison with Pastry’s first routing phase, saying that Pastry’s second phase uses 
numeric difference. 
5 For r successors, the average hop count is more accurately expressed as (½)log2N-(½)log2(r)+1 
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of the Chord lookup time to optimal lookup time on the underlying network. They demonstrated the latency 

advantage of recursive lookups over iterative lookups, but there remains room for delay reduction. For further work, 

the authors proposed to improve resilience to network partitions, using a small set of known nodes or ‘remembered’ 

random nodes. To reduce the number of messages per lookup, they suggested an increase in the size of each step 

around the ring, accomplished via a larger number of fingers at each node. Much of the paper assumed independent, 

equally likely node failures. Analysis of correlated node failures, caused by massive site or backbone failures, will 

be more important in some deployments. The paper did not attempt to recommend a fixed optimal stabilization rate. 

Liben-Nowell, Balakrishnan et al. had suggested that optimum stabilization rate might evolve according to 

measurements of peers’ behaviour [291] – such a mechanism has yet to be devised.  

Alima, El-Ansary et al. considered the communication costs of Chord’s stabilization routines, referred to as 

‘active correction’, to be excessive [292]. Two other robustness issues also motivated their Distributed K-ary Search 

design, which is similar to Chord. Firstly, the total system should evolve for an optimum balance between the 

number of peers, the lookup hopcount and the size of the routing table. Secondly, lookups should be reliable – P2P 

algorithms should be able to guarantee a successful lookup for key/value pairs that have been inserted into the 

system. A similar lookup correctness issue was raised elsewhere by one of Chord’s authors, “Is it possible to 

augment the data structure6 to work even when nodes (and their associated finger lists) just disappear?” [293] Alima, 

El-Ansary et al. asserted that P2Ps using active correction, like Chord, Pastry and Tapesty, are unable to give such a 

guarantee. They propose an alternate ‘correction-on-use’ scheme, whereby expired routing entries are corrected by 

information piggybacking lookups and insertions. A prerequisite is that lookup and insertion rates are significantly 

higher than node arrival, departure and failure rates. Correct lookups are guaranteed in the presence of simultaneous 

node arrivals or up to f concurrent node departures, where f is configurable. 

3.5. Tori 

Ratnasamy, Francis et al. developed the Content-Addressable Network (CAN), another early DHT widely 

referenced alongside Tapestry, Pastry and Chord [8, 294]. It is arranged as a virtual d-dimensional Cartesian 

coordinate space on a d-torus. Each node is responsible for a zone in this coordinate space. The designers used a 

heuristic thought to be important for large, churning P2P networks: keep the number of neighbours independent of 

system size. Consequently, its design differs significantly from Pastry, Tapestry and Chord. Whereas they have 

O(logN) neighbours per node and O(logN) hops per lookup, CAN has O(d) neighbours and O(dn1/d) hop-count. 
                                                          
6 The question was posed in the context of a nearest neighbour search algorithm, a proposed Chord extension.
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When CAN’s system-wide parameter d is set to log(N), CAN converges to their profile. If the number of nodes 

grows, a major rearrangement of the CAN network may be required [151]. The CAN designers considered building 

on PRR, but opted for the simple, low-state-per-node CAN algorithm instead. They had reasoned that a PRR-based 

design would not perform well under churn, given node departures and arrivals would affect a logarithmic number 

of nodes [8].

There have been preliminary assessments of CAN’s resilience. When a node leaves the CAN in an orderly 

fashion, it passes its own Virtual ID (VID), its neighbours’ VIDs and IP addresses, and its key/value pairs to a 

takeover node. If a node leaves abruptly, its neighbours send recovery messages towards the designated takeover 

node. CAN ensures the recovery messages reach the takeover node, even if nodes die simultaneously, by 

maintaining a VID chain with Chord’s stabilization algorithm. Some initial ‘proof of concept’ resilience simulations 

were run using the Network Simulator (ns) [295] for up to a few hundred nodes. Average hopcounts and lookup 

failure probabilities were plotted against the total number of nodes, for various node failure rates [8]. The CAN team 

documented several open research questions pertaining to state/hopcount tradeoffs, resilience, load, locality and 

heterogeneous peers [44, 294]. 

3.6. Butterflies 

Viceroy approximates a butterfly network [46]. It generally has constant degree7 like CAN. Like Chord, Tapesty 

and Pastry, it has logarithmic diameter. It improves on these systems, inasmuch as its diameter is better than CAN 

and its degree is better than Chord, Tapestry and Pastry. As with most DHTs, it utilizes Consistent Hashing. When a 

peer joins the Viceroy network, it takes a random but permanent ‘identity’ and selects its ‘level’ within the network. 

Each peer maintains general ring pointers (‘predecessor’ and ‘successor’), level ring pointers (‘nextonlevel’ and 

‘prevonlevel’) and butterfly pointers (‘left’, ‘right’ and ‘up’). When a peer departs, it normally passes its key pairs to 

a successor, and notifies other peers to find a replacement peer. 

The Viceroy paper scoped out the issue of robustness. It explicitly assumed that peers do not fail [46]. It assumed 

that join and leave operations do not overlap, so as to avoid the complication of concurrency mechanisms like 

locking. Kaashoek and Karger were somewhat critical of Viceroy’s complexity [37]. They also pointed to its fault 

tolerance blindspot. Li and Plaxton suggested that such constant-degree algorithms deserve further consideration 

[47]. They offered several pros and cons. The limited degree may increase the risk of a network partition, or inhibit 
                                                          
7
 Viceroy’s expected degree is a constant. However, its high probability bound is O(log n). For a very small number of nodes, degree is (log n).
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use of local neighbours (for the simple reason that there are less of them). On the other hand, it may be easier to 

reason about the correctness of fixed-degree networks. One of the Viceroy authors has since proposed constant-

degree peers in a two-tier, locality-aware DHT [296] – the lower degree maintained by each lower-tier peer 

purportedly improves network adaptability. Another Viceroy author has since explored an alternative bounded-

degree graph for P2P, namely the de Bruijn graph [297]. 

3.7. de Bruijn Graphs 

De Bruijn graphs have had numerous refinements since their inception [298, 299]. Schlumberger was the first to 

use them for networking [300]. Two research teams independently devised the ‘generalized’ de Bruijn graph that 

accommodates a flexible number of nodes in the system [301, 302]. Rowley and Bose studied fault-tolerant rings 

overlaid on the de Bruijn graph [303]. Lee, Liu et al. devised a two-level de Bruijn hierarchy, whereby clusters of 

local nodes are interconnected by a second-tier ring [304]. 

Many of the algorithms discussed previously are ‘greedy’ in that each time a query is forwarded, it moves closer 

to the destination. Unfortunately, greedy algorithms are generally suboptimal – for a given degree, the routing 

distance is longer than necessary [305]. Unlike these earlier P2P designs, de Bruijn graphs of degree k achieve an 

asymptotically optimal diameter logkn, where n is the number of nodes in the system and k can be varied to improve 

resilience. If there are O(log(n)) neighbours per node, the de Bruijn hop count is O(log n/log log n). To illustrate de 

Bruijn’s practical advantage, consider a network with one million nodes of degree 20: Chord has a diameter of 20, 

while de Bruijn has a diameter of 5 [36]. In 2003, there were a quick succession of de Bruijn proposals – D2B [306], 

Koorde [37], Distance Halving [132, 297] and the Optimal Diameter Routing Infrastructre (ODRI) [36]. 

Fraigniaud and Gauron began the D2B design by laying out an informal problem statement: keys should be 

evenly distributed; lookup latency should be small; traffic load should be evenly distributed; updates of routing 

tables and redistribution of keys should be fast when nodes join or leave the network. They defined a node’s 

“congestion” to be the probability that a lookup will traverse it. Apart from its optimal de Bruijn diameter, they 

highlighted D2B’s merits: a constant expected update time when nodes (O(log n) w.h.p8.); the expected node 

congestion is O((logn)/n) (O((log2n)/n) w.h.p.) [306]. D2B’s resilience was discussed only in passing. 

                                                          
8
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Koorde extends Chord to attain the optimal de Bruijn degree/diameter tradeoff above [37]. Unlike D2B, Koorde 

does not constrain the selection of node identifiers. Also unlike D2B, it caters for concurrent joins, by extension of 

Chord’s functionality. Kaashoek and Karger investigated Koorde’s resilience to a rather harsh failure scenario: “in 

order for a network to stay connected when all nodes fail with probability of ½, some nodes must have degree (log 

n)” [37]. They sketched a mechanism to increase Koorde’s degree for this more stringent fault tolerance, losing de 

Bruijn’s constant degree advantage. Similarly, to achieve a constant-factor load balance, Koorde would have to 

sacrifice its degree optimality. They suggested that the ability to trade the degree, and hence the maintenance 

overhead, against the expected hop count may be important for churning systems. They also identified an open 

problem: find a load-balanced, degree optimal DHT. Datta, Girdzijauskas et al. showed that for arbitrary key 

distributions, de Bruijn graphs fail to meet the dual goals of load balancing and search efficiency [307]. They posed 

the question, “(Is there) a constant routing table sized DHT which meets the conflicting goals of storage load 

balancing and search efficiency for an arbitrary and changing key distribution?” 

Distance Halving was also inspired by de Bruijn [297] and shares its optimal diameter. Naor and Wieder argued 

for a two-step “continuous-discrete” approach for its design. The correctness of its algorithms is proven in a 

continuous setting. The algorithms are then mapped to a discrete space. The source x and target y are points on the 

continuous interval [0,1). Data items are hashed to this same interval.  is a string which determines how messages 

leave any point on the ring: if bit t of the string is 0, the left leg is taken; if it is 1, the right leg is taken.  increases 

by one bit each hop, giving a sequence by which to step around the ring. A lookup has two phases. In the first, the 

lookup message containing the source, target and the random string hops toward the midpoint of the source and 

target. On each hop, the distance between t (x) and t (y) is halved, by virtue of the specific ‘left’ and ‘right’ 

functions. In the second phase, the message steps ‘backward’ from the midpoint to the target, removing the last bit 

in t  at each hop. ‘Join’ and ‘leave’ algorithms were outlined but there was no consideration of recovery times or 

message load on churn. Using the Distance Halving properties, the authors devised a caching scheme to relieve 

congestion in a large P2P network. They have also modified the algorithm to be more robust in the presence of 

random faults [132]. 

Solid comparisons of DHT resilience are scarce, but Loguinov, Kumar et al. give just that in their ODRI paper 

[36]. They compare Chord, CAN and de Bruijn in terms of routing performance, graph expansion and clustering. At 

the outset, they give the optimal diameter (the maximum hopcount between any two nodes in the graph) and average 
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hopcount for graphs of fixed degree. De Bruijn graphs converge to both optima, and outperform Chord and CAN on 

both counts. These optima impact both delay and aggregate lookup load. They present two clustering measures 

(edge expansion and node expansion) which are interesting for resilience. Unfortunately, after decades of de Bruijn 

research, they have no exact solution. De Bruijn was shown to be superior in terms of path overlap – “de Bruijn 

automatically selects backup paths that do not overlap with the best shortest path or with each other” [36]. 

3.8. Skip Graphs 

Skip Graphs have been pursued by two research camps [38, 41]. They augment the earlier Skip Lists [308, 309]. 

Unlike earlier balanced trees, the Skip List is probabilistic – its insert and delete operations do not require tree 

rearrangements and so are faster by a constant factor. The Skip List consists of layers of ordered linked lists. All 

nodes participate in the bottom layer 0 list. Some of these nodes participate in the layer 1 list with some fixed 

probability. A subset of layer 1 nodes participate in the layer 2 list, and so on. A lookup can proceed quickly through 

the list by traversing the sparse upper layers until it is close to, or at, the target. Unfortunately, nodes in the upper 

layers of a Skip List are potential hot spots and single points of failure. Unlike Skip Lists, Skip Graphs provide 

multiple lists at each level for redundancy, and every node participates in one of the lists at each level. 

Each node in a Skip Graph has ( )nlogΘ  neighbours on average, like some of the preceding DHTs. The Skip 

Graph’s primary edge over the DHTs is its support for prefix and proximity search. DHTs hash objects to a random 

point in the graph. Consequently, they give no guarantees over where the data is stored. Nor do they guarantee that 

the path to the data will stay within the one administration as far as possible [38]. Skip graphs, on the other hand, 

provide for location-sensitive name searches. For example, to find the document docname on the node 

user.company.com, the Skip Graph might step through its ordered lists for the prefix com.company.user [38]. 

Alternatively, to find an object with a numeric identifier, an algorithm might search the lowest layer of the Skip 

Graph for the first digit, the next layer for the next digit, in the same vein until all digits are resolved. Being ordered, 

Skip Graphs also facilitate range searches. In each of these examples, the Skip Graph can be arranged such that the 

path to the target, as far as possible, stays within an administrative boundary. If one administration is detached from 

the rest of the Skip Graph, routing can continue within each of the partitions. Mechanisms have been devised to 

merge disconnected segments [157], though at this stage, segments are remerged one at a time. A parallel merge 

algorithm has been flagged for future work. 
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The advantages of Skip Graphs come at a cost. To be able to provide range queries and data placement flexibility, 

Skip Graph nodes require many more pointers than their DHT counterparts. An increased number of pointers 

implies increased maintenance traffic. Another shortcoming of at least one of the early proposals was that no 

algorithm was given to assign keys to machines. Consequently, there are no guarantees on system-wide load 

balancing or on the distance between adjacent keys [100]. Aspnes, Kirsch et al. have recently devised a scheme to 

reduce the inter-machine pointer count from ( )mmO log , where m is the number of data elements, to ( )nnO log ,

where n is the number of nodes [100]. They proposed a two-layer scheme – one layer for the Skip Graph itself and 

the second ‘bucket layer’. Each machine is responsible for a number of buckets and each bucket elects a 

representative key. Nodes locally adjust their load. They accept additional keys if they are below their threshold or 

disperse keys to nearby nodes if they are above threshold. There appear to be numerous open issues: simulations 

have been done but analysis is outstanding; mechanisms are required to handle the arrival and departure of nodes; 

there were only brief hints as to how to handle nodes with different capacities. 

4. Semantic Index 

Semantic indexes capture object relationships. While the semantic-free methods (DHTs) have firmer theoretic 

foundations and guarantee that a key can be found if it exists, they do not on their own capture the relationships 

between the document name and its content or metadata. Semantic P2P designs do. However, since their design is 

often driven by heuristics, they may not guarantee that scarce items will be found. 

So what might the semantically indexed P2Ps add to an already crowded field of distributed information 

architectures? At one extreme there are the distributed relational database management systems (RDBMSs), with 

their strong consistency guarantees [264]. They provide strong data independence, the flexibility of SQL queries and 

strong transactional semantics  – Atomicity, Consistency, Isolation and Durability (ACID) [310]. They guarantee 

that the query response is complete – all matching results are returned. The price is performance. They scale to 

perhaps 1000 nodes, as evidenced in Mariposa [311, 312], or require query caching front ends to constrain the load 

[264]. Database research has “arguably been cornered into traditional, high-end, transactional applications” [72]. 

Then there are distributed file systems, like the Network File System (NFS) or the Serverless Network File Systems 

(xFS), with little data independence, low-level file retrieval interfaces and varied consistency [264]. Today’s eclectic 

mix of Content Distribution Networks (CDNs) generally deload primary servers by redirecting web requests to a 

nearby replica. Some intercept the HTTP requests at the DNS level and then use consistent hashing to find a replica 



J. Risson and T.Moors                  25 

[23]. Since this same consistent hashing was a forerunner to the DHT approaches above, CDNs are generally 

constrained to the same simple key lookups. 

The opportunity for semantically indexed P2Ps, then, is to provide:  

a) graduated data independence, consistency and query flexibility, and 

b) probabilistically complete query responses, across 

c) very large numbers of low-cost, geographically distributed, dynamic nodes. 

4.1. Keyword Lookup 

P2P keyword lookup is best understood by considering the structure of the underlying index and the algorithms 

by which queries are routed over that index. Figure 3 summarizes the following paragraphs by classifying the 

keyword query algorithms, index structures and metrics. The research has largely focused on scalability, not 

dependability. There have been very few studies that quantify the impact of network churn. One exception is the 

work by Chawathe et al. on the Gia system [61]. Gia’s combination of algorithms from Figure 3 (receiver-based 

flow control, biased random walk and one-hop replication) gave 2-4 orders of magnitude improvement in query 

success rates in churning networks. 

Perhaps the most widely referenced P2P system for simple keyword match is Gnutella [4]. Gnutella queries 

contain a string of keywords. Gnutella peers answer when they have files9 whose names contain all the keywords. 

As discussed in Section 2.1, early versions of Gnutella did not forward the document index. Queries were flooded 

and peers searched their own local indexes for filename matches. An early review highlighted numerous areas for 

improvement [65]. It was estimated that the query traffic alone from 50,000 early-generation Gnutella nodes would 

amount to 1.7% of the total U.S. internet backbone traffic at December 2000 levels. It was speculated that high 

degree Gnutella nodes would impede dependability. An unnecessarily high percentage of Gnutella traffic crossed 

Autonomous System (AS) boundaries – a locality mechanism may have found suitable nearby peers. 

Fortunately, there have since been numerous enhancements within the Gnutella Developer Forum. At the time of 

writing, it has been reported that Gnutella has almost 350,000 unique hosts, of which nearly 90,000 accept incoming 

connections [317]. One of the main improvements is that an index of filename keywords, called the Query Routing 
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The Gnutella 0.6 specification only provides semantics for finding plain files, but hints that Gnutella could store other resources, like cryptographic keys or meta-
information.
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Table (QRT), can now be forwarded from ‘leaf peers’ to its ‘ultrapeers’ [240]. Ultrapeers can then ensure that the 

leaves only receive queries for which they have a match, dramatically reducing the query traffic at the leaves. 

Ultrapeers can have connections to many leaf nodes (~10-100) and a small number of other ultrapeers (<10) [240]. 

Originally, a leaf node’s QRT was not forwarded by the parent ultrapeer to other ultrapeers. More recently, there has 

been a proposal to distribute aggregated QRTs amongst ultrapeers [318]. To further limit traffic, QRTs are 

compressed by hashing, according to the Query Routing Protocol (QRP) specification [261]. This same specification 

claims QRP may reduce Gnutella traffic by orders of magnitude, but cautions that simulation is required before mass 

deployment. A known shortcoming of QRP was that the extent of query propagation was independent of the 

popularity of the search terms. The Dynamic Query Protocol addressed this [319]. It required leaf nodes to send 

single queries to high-degree ultrapeers which adjust the queries’ time-to-live (TTL) bounds according to the 

number of received query results. An earlier proposal, called the Gnutella UDP Extension for Scalable Searches 

(GUESS) [314], similarly aimed to reduce the number of queries for widely distributed files. GUESS reuses the 

non-forwarding idea (Section 2). A GUESS peer repeatedly queries single ultrapeers with a TTL of 1, with a small 

timeout on each query to limit load. It chooses the number of iterations and selects ultrapeers so as to satisfy its 

search needs. For adaptability, a small number of experimental Gnutella nodes have implemented eXtensible 

Markup Language (XML) schemas for richer queries [320, 321]. None of the above Gnutella proposals explicitly 

assess robustness. 

The broader research community has recently been leveraging aspects of the Gnutella design. Lv, Ratnasamy et 

al. exposed one assumption implicit in some of the early DHT work – that designs “such as Gnutella are inherently 

not scalable, and therefore should be abandoned” [66]. They argued that by making better use of the more powerful 

peers, Gnutella’s scalability issues could be alleviated. Instead of its flooding mechanism, they used random walks. 

Their preliminary design to bias random walks towards high capacity nodes did not go as far as the ultrapeer 

proposals in that the indexes did not move to the high capacity nodes. Chawathe, Ratnasamy et al. chose to extend 

the Gnutella design with their Gia system, in response to the perceived shortcomings of DHTs in Section 1.2 [61]. 

Compared to the early Gnutella designs, they incorporated several novel features. They devise a topology adaptation 

algorithm so that most peers are attached to high-degree peers. They use a random walk search algorithm, in lieu of 

flooding, and bias the query load towards higher-degree peers. For ‘one-hop replication’, they require all nodes keep 

pointers to content on adjacent peers. To implement a receiver-controlled token-based flow control, a peer must 

have a token from its neighbouring peer before it sends a query to it. Chawathe, Ratnasamy et al. show by 
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simulations that the combination of these features provides a scalability improvement of three to five orders of 

magnitude over Gnutella “while retaining significant robustness”. The main robustness metrics they used were the 

‘collapse point’ query rate (the per node query rate at which the successful query rate falls below 90%) and the 

average hop-count immediately prior to collapse. Their comparison with Gnutella did not take into account the 

Gnutella enhancements above – this was left as future work. Castro, Costa and Rowstron argued that if Gnutella 

were built on top of a structured overlay, then both the query and overlay maintenance traffic could be reduced 

[239]. Yang, Vinograd et al. explore various policies for peer selection in the GUESS protocol, since the issue is left 

open in the original proposal [245]. For example, the peer initiating the query could choose peers that have been 

“most recently used” or that have the “most files shared”. Various policy pitfalls are identified. For example, good 

peers could be overloaded, victims of their own success. Alternatively, malicious peers could encourage the 

querying peer to try inactive peers. They conclude that a “most results” policy gives the best balance of robustness 

and efficiency. Like Castro, Costa and Rowstron, they concentrated on the static network scenario. Cholvi, Felber et 

al. very briefly describe how similar “least recently used” and “most often used” heuristics can be used by a peer to 

select peer ‘acquaintances’ [313]. They were motivated by the congestion associated with Gnutella’s TTL-limited 

flooding. Recognizing that the busiest peers can quickly become overloaded central hubs for the entire network, they 

limit the number of acquaintances for any given peer to 25. They sketch a mechanism to decrement a query’s TTL 

multiple times when it traverses “interested peers”. In summary, these Gnutella-related investigations are 

characterized by a bias for high degree peers and very short directed query paths, a disdain for flooding, and concern 

about excessive load on the ‘better’ peers. Generally, the robustness analysis for dynamic networks (content updates 

and node arrivals/departures) remains open. 

One aspect of P2P keyword search systems has received particular attention: should the index be partitioned by 

document or by keyword? The issue affects scalability. To be partitioned by document, each node has a local index 

of documents for which it is responsible. Gnutella is a prime example. Queries are generally flooded in systems 

partitioned by document. On the other hand, a peer may assume responsibility for a set of keywords. The peer uses 

an inverted list to find a matching document, either locally or at another peer. If the query contains several 

keywords, inverted lists may need to be retrieved from several different peers to find the intersection [21]. The 

initial assessment by Li, Loo et al. was that the partition-by-document approach was superior [210]. For one 

scenario of a full-text web search, they estimated the communications costs to be about six times higher than the 

feasible budget. However, wanting to exploit prior work on inverted list intersection, they studied the partition-by-
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keyword strategy. They proposed several optimizations which put the communication costs for a partition-by-

keyword system within an order of magnitude of feasibility. There had been a couple of prior papers that suggested 

partitioned-by-keyword designs incorporate DHTs to map keywords to peers [316, 322]. In Gnawali’s Keyword-set 

Search System (KSS), the index is partitioned by sets of keywords [316]. Terpstra, Behnel et al. point out that by 

keeping keyword pairs or triples, the number of lists per document in KSS is squared or tripled [323]. Shi, 

Guangwen et al. interpreted the approximations of Li, Loo et al. to mean that neither approach is feasible on its own 

[21]. Their Multi-Level Partitioning (MLP) scheme incorporates both partitioning approaches. They arrange nodes 

into a group hierarchy, with all nodes in the single ‘level 0’ group, and with the same nodes sub-divided into k

logical subgroups on ‘level 1’. The subgroups are again divided, level by level, until level l. The inverted index is 

partitioned by document between groups and by keyword within groups. MLP avoids the query flooding normally 

associated with systems partitioned by document, since a small number of nodes in each group process the query. It 

reduces the bandwidth overheads associated with inverted list intersection in systems partitioned solely by keyword, 

since groups can calculate the intersection independently over the documents for which they are responsible. MLP 

was overlaid on SkipNet, per Section 3.8 [38]. Some initial analyses of communications costs and query latencies 

were provided.  

Much of the research above addresses partial keyword search. Daswani et al. highlighted the open problem of 

efficient, comprehensive keyword search [25]. How can exhaustive searches be achieved without flooding queries to 

every peer in the network? Terpstra, Behnel et al. couched the keyword search problem in rendezvous terms: 

dynamic keyword queries need to ‘meet’ with static document lists [323]. Their Bitzipper scheme is partitioned by 

document. They improved on full flooding by putting document metadata on n2  nodes and forwarding queries 

through only n6  nodes. They reported that Bitzipper nodes need only 1/166th of the bandwidth of full-flooding 

Gnutella nodes for an exhaustive search. An initial comparison of query load was given. There was little 

consideration of either static or dynamic resilience, that is, of nodes failing, of documents continually changing, or 

of nodes continually joining and leaving the network. 

4.2. Peer Information Retrieval 

The field of Information Retrieval (IR) has matured considerably since its inception in the 1950s [324]. A 

taxonomy for IR models has been formalized [242]. It consists of four elements: a representation of documents in a 

collection; a representation of user queries; a framework describing relationships between document representations 
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and queries; and a ranking function that quantifies an ordering amongst documents for a particular query. Three 

main issues motivate current IR research – information relevance, query response time, and user interaction with IR 

systems. The dominant IR trends for searching large text collections are also threefold [242]. The size of collections 

is increasing dramatically. More complicated search mechanisms are being found to exploit document structure, to 

accommodate heterogeneous document collections, and to deal with document errors. Compression is in favour – it 

may be quicker to search compact text or retrieve it from external devices. In a distributed IR system, query 

processing has four parts. Firstly, particular collections are targeted for the search. Secondly, queries are sent to the 

targeted collections. Queries are then evaluated at the individual collections. Finally results from the collections are 

collated. 

So how do P2P networks differ from distributed IR systems? Bawa, Manku et al. presented four differences [62]. 

They suggested that a P2P network is typically larger, with tens or hundreds of thousands of nodes. It is usually 

more dynamic, with node lifetimes measured in hours. They suggested that a P2P network is usually homogeneous, 

with a common resource description language. It lacks the centralized “mediators” found in many IR systems, that 

assume responsibility for selecting collections, for rewriting queries, and for merging ranked results. These 

distinctions are generally aligned with the peer characteristics in Section 1. One might add that P2P nodes display 

more symmetry – peers are often both information consumers and producers. Daswani, Garcia-Molina et al. pointed 

out that, while there are IR techniques for ranked keyword search at moderate scale, research is required so that 

ranking mechanisms are efficient at the larger scale targeted by P2P designs [25]. Joseph and Hoshiai surveyed 

several P2P systems using metadata techniques from the IR toolkit [60]. They described an assortment of IR 

techniques and P2P systems, including various metadata formats, retrieval models, bloom filters, DHTs and trust 

issues. 

In the ensuing paragraphs, we survey P2P work that has incorporated information retrieval models, particularly 

the Vector Model and the Latent Semantic Indexing Model. We omit the P2P work based on Bayesian models. 

Some have pointed to such work [60], but it made no explicit mention of the model [325]. One early paper on P2P 

content-based image retrieval also leveraged the Bayesian model [326]. For the former two models, we briefly 

describe the design, then try to highlight robustness aspects. On robustness, we are again stymied for lack of prior 

work. Indeed, a search across all proceedings of the Annual ACM Conference on Research and Development in 

Information Retrieval for the words “reliable”, “available”, “dependable” or “adaptable” did not return any results at 
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the time of writing. In contrast, a standard text on distributed database management systems [327] contains a whole 

chapter on reliability. IR research concentrates on performance measures. Common performance measures include 

recall, the fraction of the relevant documents which has been retrieved, and precision, the fraction of the retrieved 

documents which is relevant [242]. Ideally, an IR system would have high recall and high precision. Unfortunately 

techniques favouring one often disadvantage the other [324]. 

4.2.1. Vector Model 

The vector model [328] represents both documents and queries as term vectors, where a term could be a word or 

a phrase. If a document or query has a term, the weight of the corresponding dimension of the vector is non-zero. 

The similarity of the document and query vectors gives an indication of how well a document matches a particular 

query.  

The weighting calculation is critical across the retrieval models. Amongst the numerous proposals for the 

probabilistic and vector models, there are some commonly recurring weighting factors [324]. One is term frequency. 

The more a term is repeated in a document, the more important the term is. Another is inverse document frequency. 

Terms common to many documents give less information about the content of a document. Then there is document 

length. Larger documents can bias term frequencies, so weightings are sometimes normalized against document 

length. The expression “TFIDF weighting” refers to the collection of weighting calculations that incorporate term 

frequency and inverse document frequency, not just to one. Two weighting calculations have been particularly 

dominant – Okapi [329] and pivoted normalization [330]. A distributed version of Google’s Pagerank algorithm has 

also been devised for a P2P environment [331]. It allows incremental, ongoing Pagerank calculations while 

documents are inserted and deleted. 

A couple of early P2P systems leveraged the vector model. Building on the vector model, PlanetP divided the 

ranking problem into two steps [215]. In the first, peers are ranked for the probability that they have matching 

documents. In the second, higher priority peers are contacted and the matching documents are ranked. An Inverse 

Peer Frequency, analogous to the Inverse Document Frequency, is used to rank relevant peers. To further constrain 

the query traffic, PlanetP contacts only the first group of m peers to retrieve a relevant set of documents. In this way, 

it repeatedly contacts groups of m peers until the top k document rankings are stable. While the PlanetP designers 

first quantified recall and precision, they also considered reliability. Each PlanetP peer has a global index with a list 

of all other peers, their IP addresses, and their Bloom filters. This large volume of shared information needs to be 
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maintained. Klampanos and Jose saw this as PlanetP’s primary shortcoming [332]. Each Bloom filter summarized 

the set of terms in the local index of each peer. The time to propagate changes, be they new documents or peer 

arrivals/departures, was studied by simulation for up to 1000 peers. The reported propagation times were in the 

hundreds of seconds. Design workarounds were required for PlanetP to be viable across slower dial-up modem 

connections. For future work, the authors were considering some sort of hierarchy to scale to larger numbers of 

peers.  

A second early system using the vector model is the Fault-tolerant, Adaptive, Scalable Distributed search engine 

[263], which extended the Freenet design (Section 2.3) for richer queries. The original Freenet design could find a 

document based on a globally unique identifier. Kronfol’s design added the ability to search, for example, for 

documents about “apples AND oranges NOT bananas”. It uses a TFIDF weighting scheme to build a document’s 

term vector. Each peer calculates the similarity of the query vector and local documents and forwards the query to 

the best downstream peer. Once the best downstream peer returns a result, the second-best peer is tried, and so on. 

Simulations with 1000 nodes gave an indication of the query path lengths in various situations - when routing 

queries in a network with constant rates of node and document insertion, when bootstrapping the network in a 

“worst-case” ring topology, or when failing randomly and specifically selected peers. Kronfol claimed excellent 

average-case performance – less than 20 hops to retrieve the same top n results as a centralized search engine. There 

were, however, numerous cases where the worst-case path length was several hundred hops in a network of only 

1000 nodes. 

In parallel, there have been some P2P designs based on the vector model from the University of Rochester – 

pSearch10 [9, 333] and eSearch [334]. The early pSearch paper suggested a couple of retrieval models, one of which 

was the Vector Space Model, to search only the nodes likely to have matching documents. To obtain approximate 

global statistics for the TFIDF calculation, a spanning tree was constructed across a subset of the peers. For the m

top terms, the term-to-document index was inserted into a Content-Addressable Network [294]. A variant which 

mapped terms to document clusters was also suggested. eSearch is a hybrid of the partition-by-document and 

partition-by-term approaches seen in the previous section. eSearch nodes are primarily partitioned by term. Each is 

responsible for the inverted lists for some top terms. For each document in the inverted list, the node stores the 

complete term list. To reduce the size of the index, the complete term lists for a document are only kept on nodes 
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The pSearch design had earlier been proposed under the name PeerSearch 



32                J. Risson and T. Moors

that are responsible for top terms in the document. eSearch uses the Okapi term weighting to select top terms. It 

relies on the Chord DHT [34] to associate terms with nodes storing the inverted lists. It also uses automatic query 

expansion. This takes the significant terms from the top document matches and automatically adds them to the 

user’s query to find additional relevant documents. The eSearch performance was quantified in terms of search 

precision, the number of retrieved documents, and various load-balancing metrics. Compared to the more common 

proposals for partitioning by keywords, eSearch consumed 6.8 times the storage space to achieve faster search 

times. 

4.2.2. Latent Semantic Indexing 

Another retrieval model used in P2P proposals is Latent Semantic Indexing (LSI) [335]. Its key idea is to map 

both the document and query vectors to a concept space with lower dimensions. The starting point is a t*N

weighting matrix, where t is the total number of indexed terms, N is the total number of documents, and the matrix 

elements could be TFIDF rankings. Using singular value decomposition, this matrix is reduced to a smaller number 

of dimensions, while retaining the more significant term-to-document mappings. Baeza-Yates and Ribeiro-Neto 

suggested that LSI’s value is a novel theoretic framework, but that its practical performance advantage for real 

document collections had yet to be proven [242]. pSearch incorporated LSI [9]. By placing the indices for 

semantically similar documents close in the network, Tang, Xu et al. touted significant bandwidth savings relative to 

the early full-flooding variant of Gnutella [333]. They plotted the number of nodes visited by a query. The also 

explored the tradeoff with accuracy, the percentage match between the documents returned by the distributed 

pSearch algorithm and those from a centralized LSI baseline. In a more recent update to the pSearch work, Tang, 

Dwarkadas et al. summarized LSI’s shortcomings [336]. Firstly, for large document collections, its retrieval quality 

is inherently inferior to Okapi. Secondly, singular value decomposition consumes excessive memory and 

computation time. Consequently, the authors used Okapi for searching while retaining LSI for indexing. With 

Okapi, they selected the next node to be searched and selected documents on searched nodes. With LSI, they 

ensured that similar documents are clustered near each other, thereby optimizing the network search costs. When 

retrieving a small number of top documents, the precision of LSI+Okapi approached that of Okapi. However, if 

retrieving a large number of documents, the LSI+Okapi precision is inferior. The authors want to improve this in 

future work. 
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5. Queries 

Database research suggests directions for P2P research. Hellerstein observed that, while work on fast P2P indexes 

is well underway, P2P query optimization remains a promising topic for future research [23]. Kossman reviewed the 

state of the art of distributed query processing, highlighting areas for future research: simulation and query 

optimization for networks of tens of thousands of servers and millions of clients; non-relational data types like 

XML, text and images; and partial query responses since on the Internet “failure is the rule rather than the 

exception” [19]. A primary motivation for the P2P system, PIER, was to scale from the largest database systems of a 

few hundred nodes to an Internet environment in which there are over 160 million nodes [22]. Litwin and Sahri have 

also considered ways to combine distributed hashing, more specifically the Scalable Distributed Data Structures, 

with SQL databases, claiming to be first to implement scalable distributed database partitioning [337]. Motivated by 

the lack of transparent distribution in current distributed databases, they measure query execution times for 

Microsoft SQL servers aggregated by means of an SDDS layer. One of their starting assumptions was that it is too 

challenging to change the SQL query optimizer. 

Database research also suggests the approach to P2P research. Researchers of database query optimization were 

divided between those looking for optimal solutions in special cases and those using heuristics to answer all queries 

[338]. Gribble et al. cast query optimization in terms of the data placement problem, which is to “distribute data and 

work so the full query workload is answered with lowest cost under the existing bandwidth and resource 

constraints” [231]. They pointed out that even the static version of this problem is NP-complete in P2P networks. 

Consequently, research on massive, dynamic P2P networks will likely progress using both strategies of early 

database research - heuristics and special-case optimizations. 

If P2P networks are going to be adaptable, if they are to support a wide range of applications, then they need to 

accommodate many query types [72]. Up to this point, we have reviewed queries for keys (Section 3) and keywords 

(Sections 4.1and 4.2). Unfortunately, a major shortcoming of the DHTs in Sections 3.3 to 3.7 is that they primarily 

support exact-match, single-key queries. Skip Graphs support range and prefix queries, but not aggregation queries. 

Here we probe below the language syntax to identify the open research issues associated with more expressive P2P 

queries [25]. Triantafillou and Pitoura observed the disparate P2P designs for different types of queries and so 

outlined a unifying framework [76]. To classify queries, they considered the number of relations (single or 

multiple), the number of attributes (single or multiple) and the type of query operator. They described numerous 
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operators: equality, range, join and “special functions”. The latter referred to aggregation (like sum, count, average, 

minimum and maximum), grouping and ordering. The following sections approximately fit their taxonomy - range 

queries, multi-attribute queries, join queries and aggregation queries. There has been some initial P2P work on other 

query types - continuous queries [20, 22, 73], recursive queries [22, 74] and adaptive queries [23, 75]. For these, we 

defer to the primary references. 

5.1. Range Queries 

The support of efficient range predicates in P2P networks was identified as an important open research issue by 

Huebsch et al. [22]. Range partitioning has been important in parallel databases to improve performance, so that a 

transaction commonly needs data from only one disk or node [22]. One type of range search, longest prefix match, is 

important because of its prevalence in routing schemes for voice and data networks alike. In other applications, 

users may pose broad, inexact queries, even though they require only a small number of responses. Consequently 

techniques to locate similar ranges are also important [77]. Various proposals for range searches over P2P networks 

are summarized in Figure 4. Since the Scalable Distributed Data Structure (SDDS) has been an important influence 

on contemporary Distributed Hash Tables (DHTs) [49-51], we also include ongoing work on SDDS range searches. 

The papers on P2P range search can be divided into those that rely on an underlying DHT (the first five entries in 

(Figure 4) and those that do not (the subsequent three entries). Bharambe, Agrawal et al. argued that DHTs are 

inherently ill-suited to range queries [84]. The very feature that makes for their good load balancing properties, 

randomized hash functions, works against range queries. One possible solution would be to hash ranges, but this can 

require a priori partitioning. If the partitions are too large, partitions risk overload. If they are too small, there may 

be too many hops. 

Despite these potential shortcomings, there have been several range query proposals based on DHTs. If hashing 

ranges to nodes, it is entirely possible that overlapping ranges map to different nodes. Gupta, Agrawal et al. rely on 

locality sensitive hashing to ensure that, with high probability, similar ranges are mapped to the same node [77]. 

They propose one particular family of locality sensitive hash functions, called min-wise independent permutations. 

The number of partitions per node and the path length were plotted against the total numbers of peers in the system. 

For a network with 1000 nodes, the hop-count distribution was very similar to that of the exact-matching Chord 

scheme. Was it load-balanced? For the same network with 50,000 partitions, there were over two orders of 

magnitude variation in the number of partitions at each node (first and ninety-ninth percentiles). The Prefix Hash 
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Tree is a trie in which prefixes are hashed onto any DHT. The preliminary analysis suggests efficient doubly 

logarithmic lookup, balanced load and fault resilience [78, 79]. Andrzejak and Xu were perhaps the first to propose 

a mapping from ranges to DHTs [80]. They use one particular Space Filling Curve, the Hilbert curve, over a Content 

Addressable Network (CAN) construction (Section 3.5). They maintain two properties: nearby ranges map to nearby 

CAN zones; if a range is split into two sub-ranges, then the zones of the sub-ranges partition the zone of the primary 

range. They plot path length and load proxy measures (the total number of messages and nodes visited) for three 

algorithms to propagate range queries: brute force; controlled flooding and directed controlled flooding. Schmidt 

and Parashar also advocated Space Filling Curves to achieve range queries over a DHT [81]. However they point 

out that, while Andrzejak and Xu use an inverse Space Filling Curve to map a one-dimensional space to d-

dimensional zones, they map a d-dimensional space back to a one-dimensional index. Such a construction gives the 

ability to search across multiple attributes (Section 5.2). Tanin, Harwood et al. suggested quadtrees over Chord [82], 

and gave preliminary simulation results for query response times. 

Because DHTs are naturally constrained to exact-match, single-key queries, researchers have considered other 

P2P indexes for range searches. Several were based on Skip Graphs [38, 41] which, unlike the DHTs, do not 

necessitate randomizing hash functions and are therefore capable of range searches. Unfortunately, they are not load 

balanced [83]. For example, in SkipNet [48], hashing was added to balance the load - the Skip Graph could support 

range searches or load balancing, but not both. One solution for load-balancing relies on an increased number of 

‘virtual’ servers [168] but, in their search for a system that can both search for ranges and balance loads, Bharambe, 

Agrawal et al. rejected the idea [84]. The virtual servers work assumed load imbalance stems from hashing, that is, 

by skewed data insertions and deletions. In some situations, the imbalance is triggered by a skewed query load. In 

such circumstances, additional virtual servers can increase the number of routing hops and increase the number of 

pointers that a Skip Graph needs to maintain. Ganesan, Bawa et al. devised an alternate method to balance load [83]. 

They proposed two Skip Graphs, one to index the data itself and the other to track load at each node in the system. 

Each node is able to determine the load on its neighbours and the most (least) loaded nodes in the system. They 

devise two algorithms: NBRADJUST balances load on neighbouring nodes; using REORDER, empty nodes can 

take over some of the tuples on heavily loaded nodes. Their simulations focus on skewed storage load, rather than 

on skewed query loads, but they surmise that the same approach could be used for the latter. 
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Other proposals for range queries avoid both the DHT and the Skip Graph. Bharambe, Agrawal et al. distinguish 

their Mercury design by its support for multi-attribute range queries and its explicit load balancing [84]. In Mercury, 

nodes are grouped into routing hubs, each of which is responsible for various query attributes. While it does not use 

hashing, Mercury is loosely similar to the DHT approaches: nodes within hubs are arranged into rings, like Chord 

[34]; for efficient routing within hubs, k long-distance links are used, like Symphony [339]. Range lookups require 

)/(log 2 knO  hops. Random sampling is used to estimate the average load on nodes and to find the parts of the 

overlay that are lightly loaded. Whereas Symphony assumed that nodes are responsible for ranges of approximately 

equal size, Mercury’s random sampling can determine the location of the start of the range, even for non-uniform 

ranges [84]. P-Grid [42] does provide for range queries, by virtue of the key ordering in its tree structures. Ganesan, 

Bawa et al. critiqued its capabilities [83]: P-Grid assumes fixed-capacity nodes; there was no formal characterization 

of imbalance ratios or balancing costs; every P-Grid periodically contacts other nodes for load information. 

The work on Scalable Distributed Data Structures (SDDSs) has progressed in parallel with P2P work and has 

addressed range queries. Like the DHTs above, the early SDDS Linear Hashing (LH*) schemes were not order-

preserving [52]. To facilitate range queries, Litwin, Niemat et al. devised a Range Parititioning variant, RP* [87]. 

There are options to dispense with the index, to add indexes to clients and to add them to servers. In the variant 

without an index, every query is issued via multicasting. The other variants also use some multicasting. The initial 

RP* paper suggested scalability to thousands of sites, but a more recent RP* simulation was capped at 140 servers 

[88]. In that work, Tsangou, Ndiaye et al. investigated TCP and UDP mechanisms by which servers could return 

range query results to clients. The primary metrics were search and response times. Amongst the commercial 

parallel database management systems, they reported that the largest seems only to scale to 32 servers (SQL Server 

2000). For future work, they planned to explore aggregation of query results, rather than establishing a connection 

between the client and every single server with a response. 

All in all, it seems there are numerous open research questions on P2P range queries. How realistic is the 

maintenance of global load statistics considering the scale and dynamism of P2P networks? Simulations at larger 

scales are required. Proposals should take into account both the storage load (insert and delete messages) and the 

query load (lookup messages). Simplifying assumptions need to be attacked. For example, how well do the above 

solutions work in networks with heterogeneous nodes, where the maximum message loads and index sizes are node-

dependent?
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5.2. Multi-Attribute Queries 

There has been some work on multi-attribute P2P queries. As late as September 2003, it was suggested that there 

has not been an efficient solution [76].  

Again, an early significant work on multi-attribute queries over aggregated commodity nodes germinated 

amongst SDDSs. k-RP* [89] uses the multi-dimensional binary search tree (or k-d tree where k indicates the number 

of dimensions of the search index) [340]. It builds on the RP* work from the previous section and inherits their 

capabilities for range search and partial match. Like the other SDDSs, k-RP* indexes can fit into RAM for very fast 

lookup. For future work, Litwin and Neimat suggested a) a formal analysis of the range search termination 

algorithm and the k-d paging algorithm, b) a comparison with other multi-attribute data structures (quad-trees and 

R-trees) and c) exploration of query processing, concurrency control and transaction management for k-RP* files, 

and [89]. On the latter point, others have considered transactions to be inconsequential to the core problem of 

supporting more complex queries in P2P networks [72]. 

In architecting their secure wide-area Service Discovery Service (SDS), Hodes, Czerwinski et al. considered three 

possible designs for multi-criteria search – Centralization, Mapping and Flooding [90]. These correlate to the index 

classifications of Section 2 – Central, Distributed and Local. They discounted the centralized, Napster-like index for 

its risk of a single point of failure. They considered the hash-based mappings of Section 3 but concluded that it 

would not be possible to adequately partition data. A document satisfying many criteria would be wastefully stored 

in many partitions. They rejected full flooding for its lack of scalability. Instead, they devised a query filtering 

technique, reminiscent of Gnutella’s query routing protocol (Section 4.1). Nodes push proactive summaries of their 

data rather than waiting for a query. Summaries are aggregated and stored throughout a server hierarchy, to guide 

subsequent queries. Some initial prototype measurements were provided for total load on the system, but not for 

load distribution. They put several issues forward for future work. The indexing needs to be flexible to change 

according to query and storage workloads. A mesh topology might improve on their hierarchic topology since query 

misses would not propagate to root servers. The choice is analogous to BGP meshes and DNS trees. 

More recently, Cai, Frank et al. devised the Multi-Attribute Addressable Network (MAAN) [91]. They built on 

Chord to provide both multi-attribute and range queries, claiming to be the first to service both query types in a 

structured P2P system. Each MAAN node has O(log N) neighbours, where N is the number of nodes. MAAN multi-
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attribute range queries require )(log minsNNO ×+  hops, where mins  is the minimum range selectivity across all 

attributes. Selectivity is the ratio of the query range to the entire identifier range. The paper assumed that a locality 

preserving hash function would ensure balanced load. Per Section 5.1, the arguments by Bharambe, Agrawal et al. 

have highlighted the shortcomings of this assumption [84]. MAAN required that the schema must be fixed and 

known in advance – adaptable schemas were recommended for subsequent attention. The authors also 

acknowledged that there is a selectivity breakpoint at which full flooding becomes more efficient than their scheme. 

This begs for a query resolution algorithm that adapts to the profile of queries. Cai and Frank followed up with 

RDFPeers [55]. They differentiate their work from other RDF proposals by a) guaranteeing to find query results if 

they exist and b) removing the requirement of prior definition of a fixed schema. They hashed <subject, predicate, 

object> triples onto the MAAN and reported routing hop metrics for their implementation. Load imbalance across 

nodes was reduced to less than one order of magnitude, but the specific measure was number of triples stored per 

node – skewed query loads were not considered. They plan to improve load balancing with the virtual servers of 

Section 5.1 [168]. 

5.3. Join Queries 

Two research teams have done some initial work on P2P join operations. Harren, Hellerstein et al. initially 

described a three-layer architecture – storage, DHT and query processing. They implemented the join operation by 

modifying an existing Content Addressable Network (CAN) simulator, reporting “significant hot-spots in all 

dimensions: storage, processing and routing” [72]. They progressed their design more recently in the context of 

PIER, a distributed query engine based on CAN [22, 341]. They implemented two equi-join algorithms. In their 

design, a key is constructed from the “namespace” and the “resource ID”. There is a namespace for each relation 

and the resource ID is the primary key for base tuples in that relation. Queries are multicast to all nodes in the two 

namespaces (relations) to be joined. Their first algorithm is a DHT version of the symmetric hash join. Each node in 

the two namespaces finds the relevant tuples and hashes them to a new query namespace. The resource ID in the 

new namespace is the concatenation of join attributes. In the second algorithm, called “fetch matches”, one of the 

relations is already hashed on the join attributes. Each node in the second namespace finds tuples matching the 

query and retrieves the corresponding tuples from the the first relation. They leveraged two other techniques, namely 

the symmetric semi-join rewrite and the Bloom filter rewrite, to reduce the high bandwidth overheads of the 

symmetric hash join. For an overlay of 10,000 nodes, they simulated the delay to retrieve tuples and the aggregate 
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network bandwidth for these four schemes. The initial prototype was on a cluster of 64 PCs, but it has more recently 

been expanded to PlanetLab. 

Triantafillou and Pitoura considered multicasting to large numbers of peers to be inefficient [76]. They therefore 

allocated a limited number of special peers, called range guards. The domain of the join attributes was divided, one 

partition per range guard. Join queries were sent only to range guards, where the query was executed. Efficient 

selection of range guards and a quantitive evaluation of their proposal were left for future work. 

5.4. Aggregation Queries 

Aggregation queries invariable rely on tree-structures to combine results from a large number of nodes. Examples 

of aggregation queries are Count, Sum, Maximum, Minimum, Average, Median and Top-K [92, 342, 343]. Figure 5 

summarizes the tree and query characteristics that affect dependability.  

The fundamental design choices for aggregation trees relate to how the overlay uses DHTs, how it repairs itself 

when there are failures, how many aggregation trees there are, and whether the tree is static or dynamic (Figure 5). 

Astrolabe is one of the most influential P2P designs included in Figure 5, yet it makes no use of DHTs [92]. Other 

designs make use of the internal trees of Plaxton-like DHTs. Others build independent tree structures on top of 

DHTs. Most of the designs repair the aggregation tree with periodic mechanisms similar to those used in the DHTs 

themselves. Willow is an exception [32]. It uses a Tree Maintenance Protocol to “zip” disjoint aggregation trees 

together when there are major failures. Yalagandula and Dahlin found reconfigurations at the aggregation layer to be 

costly, suggesting more research on techniques to reduce the cost and frequency of such reconfigurations [98]. Many 

of the designs use multiple aggregation trees, each rooted at the DHT node responsible for the aggregation attribute. 

On the other hand, the Self-Organized Metadata Overlay [56] uses a single tree and is vulnerable to a single point of 

failure at its root.  

At the time of writing, researchers have just begun exploring the performance of queries in the presence of churn. 

Most designs are for best-effort queries. Bawa et al. devised a better consistency model, called Single-Site Validity 

[99] to qualify the accuracy of results when there is churn. Its price was a five-fold increase in the message load, 

when compared to an efficient but best-effort Spanning Tree. Gossip mechanisms are resilient to churn, but they 

delay aggregation results and incur high message cost for aggregation attributes with small read-to-write ratios. 

6. Conclusions 

Research on peer-to-peer networks can be divided into four categories – search, storage, security and 

applications. This critical survey has focused on search methods. While P2P networks have been classified by the 
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existence of an index (structured or unstructured) or the location of the index (local, centralized and distributed), this 

survey has shown that most have evolved to have some structure, whether it is indexes at superpeers or indexes 

defined by DHT algorithms. As for location, the distributed index is most common. The survey has characterized 

indexes as semantic and semantic-free. It has also critiqued P2P work on major query types. While much of it 

addresses work from 2000 or later, we have traced important building blocks from the 1990s. 

The initial motivation in this survey was to answer the question, “How robust are P2P search networks?” The 

question is key to the deployment of P2P technology. Balakrishnan, Kaashoek et al. argued that the P2P architecture 

is appealing: the startup and growth barriers are low; they can aggregate enormous storage and processing resources; 

“the decentralized and distributed nature of P2P systems gives them the potential to be robust to faults or intentional 

attacks” [18]. If P2P is to be a disruptive technology in applications other than casual file sharing, then robustness 

needs to be practically verified [20]. 

The best comparative research on P2P dependability has been done in the context of Distributed Hash Tables 

(DHTs) [270]. The entire body of DHT research can be distilled to four main observations about dependability 

(Section 3.2). Firstly, static dependability comparisons show that no O(log N) DHT geometry is significantly more 

dependable than the other O(log N) geometries.  Secondly, dynamic dependability comparisons show that DHT 

dependability is sensitive to the underlying topology maintenance algorithms (Figure 2). Thirdly, most DHTs use 

O(log N) geometries to suit ephemeral nodes, whereas the O(1) hop DHTs suit stable nodes – they deserve more 

research attention. Fourthly, although not yet a mature science, the study of DHT dependability is helped by recent 

simulation tools that support multiple DHTs [278]. 

We make the following four suggestions for future P2P research: 

1) Complete the companion P2P surveys for storage, security and applications. A rough outline has been 

suggested in Figure 1, along with references. The need for such surveys was highlighted within the peer-to-peer 

research group of the Internet Research Task Force (IRTF) [17]. 

2) P2P indexes are maturing. P2P queries are embryonic. Work on more expressive queries over P2P indexes 

started to gain momentum in 2003, but remains fraught with efficiency and load issues.  
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3) Isolate the low-level mechanisms affecting robustness. There is limited value in comparing robustness of 

DHT geometries (like rings versus de Bruijn graphs), when robustness is highly sensitive to underlying topology 

maintenance algorithms (Figure 2).  

4) Build consensus on robustness metrics and their acceptable ranges. This paper has teased out numerous 

measures that impinge on robustness, for example, the median query path length for a failure of x% of nodes, 

bisection width, path overlap, the number of alternatives available for the next hop, lookup latency, average live 

bandwidth (bytes/node/sec), successful routing rates, the number of timeouts (caused by a finger pointing to a 

departed node), lookup failure rates (caused by nodes that temporarily point to the wrong successor during churn) 

and clustering measures (edge expansion and node expansion). Application-level robustness metrics need to drive a 

consistent assessment of the underlying search mechanics. 

7. Bibliography 

[1] M. Roussopoulos, M. Baker, D. Rosenthal, T. Guili, P. Maniatis, and J. Mogul, 2 P2P of Not 2 P2P?, The 3rd 
Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 

[2] A. Rowstron and P. Druschel, Pastry:  Scalable, distributed object location and routing for large-scale peer-to-
peer systems, IFIP/ACM Middleware 2001, Nov 2001. 

[3] B. Yeager and B. Bhattacharjee, Peer-to-Peer Research Group Charter, 
http://www.irtf.org/charters/p2prg.html (2003) 

[4] T. Klingberg and R. Manfredi, Gnutella 0.6, (2002) 
[5] I. Clarke, A Distributed Decentralised Information Storage and Retrieval System, Undergraduate Thesis, 

1999. 
[6] B. Zhao, J. Kubiatowicz, and A. Joseph, Tapestry:  an infrastructure for fault-tolerant wide-area location and 

routing, Report No. UCB/CSD-01-1141 2001. 
[7] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and H. Balakrishnan, Chord:  A 

scalable peer-to-peer lookup service for internet applications, Proc.  ACM SIGCOMM 2001 2001, pp. 149-
160. 

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable content-addressable network, 
Proc. of the conf. on Applications, technologies, architectures and protocols for computer communications, 
August 27-31 2001, pp. 161-172. 

[9] C. Tang, Z. Xu, and M. Mahalingam, pSearch: information retrieval in structured overlays, First Workshop on 
Hot Topics in Networks. Also Computer Communication Review, Volume 33, Number 1, January 2003, Oct 
28-29 2002. 

[10] W. Nejdl, S. Decker, and W. Siberski, Edutella Project, RDF-based Metadata Infrastructure for P2P 
Applications, http://edutella.jxta.org/ (2003) 

[11] K. Aberer and M. Hauswirth, Peer-to-peer information systems: concepts and models, state-of-the-art, and 
future systems, ACM SIGSOFT Software Engineering Notes, Proc. 8th European software engineering 
conference held jointly with 9th ACM SIGSOFT international symposium on foundations of software 
engineering 26 (5) (2001) 

[12] L. Zhou and R. van Renesse, P6P: a peer-to-peer approach to internet infrastructure, The 3rd Int'l Workshop 
on Peer-to-Peer Systems, February 26-27 2004. 

[13] Citeseer, Citeseer Scientific Literature Digital Library, http://citeseer.ist.psu.edu/ (2004) 
[14] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and Z. Xu, Peer-to-

Peer Computing, HP Technical Report, HPL-2002-57 2002. 



42                J. Risson and T. Moors

[15] K. Aberer and M. Hauswirth, An overview on peer-to-peer information systems, Workshop on Distributed 
Data and Structures WDAS-2002 2002. 

[16] F. DePaoli and L. Mariani, Dependability in Peer-to-Peer Systems, IEEE Internet Computing 8 (4) (2004) 54-
61. 

[17] B. Yeager, Proposed research tracks, Email to the Internet Research Task Force IRTF P2P Research Group, 
Nov 10 2003. 

[18] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, Looking up data in P2P systems, 
Communications of the ACM 46 (2) (2003) 43-48. 

[19] D. Kossmann, The state of the art in distributed query processing, ACM Computing Surveys 32 (4) (2000) 
422-469. 

[20] B. Gedik and L. Liu, Reliable peer-to-peer information monitoring through replication, Proc. 22nd Int'l Symp. 
on Reliable Distributed Systems, 6-8 Oct 2003, pp. 56-65. 

[21] S.-M. Shi, Y. Guangwen, D. Wang, J. Yu, S. Qu, and M. Chen, Making peer-to-peer keyword searching 
feasible using multi-level partitioning, The 3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 

[22] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica, Querying the Internet with 
PIER, Proc. 29th Int'l Conf. on Very Large Databases VLDB'03, September 2003. 

[23] J. M. Hellerstein, Toward network data independence, ACM SIGMOD Record 32 (3) (2003) 34-40. 
[24] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica, The impact of DHT routing 

geometry on resilience and proximity, Proc. 2003 conference on Applications, Technologies, Architectures 
and Protocols for Computer Communications 2003, pp. 381-394. 

[25] N. Daswani, H. Garcia-Molina, and B. Yang, Open Problems in Data-sharing Peer-to-peer Systems, The 9th 
Int'l Conf. on Database Theory (ICDT 2003), Siena, Italy, 8-10 January (2003) 

[26] B. Cooper and H. Garcia-Molina, Studying search networks with SIL, Second Int'l Workshop on Peer-to-Peer 
Systems IPTPS 03, 20-21 February 2003. 

[27] M. Bawa, Q. Sun, P. Vinograd, B. Yang, B. Cooper, A. Crespo, N. Daswani, P. Ganesan, H. Garcia-Molina, 
S. Kamvar, S. Marti, and M. Schlossed, Peer-to-peer research at Stanford, ACM SIGMOD Record 32 (3) 
(2003) 23-28. 

[28] B. Yang and H. Garcia-Molina, Improving search in peer-to-peer networks, Proc. 22nd IEEE Int'l Conf. on 
Distributed Computing Systems, July 2002. 

[29] B. Yang and H. Garcia-Molina, Efficient search in peer-to-peer networks, Proc. 22nd Int'l Conf. on 
Distributed Computing Systems, July 2-5 2002. 

[30] C. Plaxton, R. Rajaraman, and A. Richa, Accessing nearby copies of replicated objects in a distributed 
environment, ACM Symp. on Parallel Algorithms and Architectures (1997) 

[31] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz, Tapestry: A Resilient Global-Scale 
overlay for Service Deployment, IEEE Journal on Selected Areas in Communications 22 (1) (2004) 41-53. 

[32] R. van Renesse and A. Bozdog, Willow: DHT, aggregation and publish/subscribe in one protocol, The 3rd 
Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 

[33] P. Ganesan, G. Krishna, and H. Garcia-Molina, Canon in G Major: Designing DHTs with Hierarchical 
Structure, Proc. Int'l Conf. on Distributed Computing Systems ICDCS 2004 2004. 

[34] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and H. Balakrishnan, Chord:  a 
scalable peer-to-peer lookup protocol for Internet applications, IEEE/ACM Trans. on Networking 11 (1) 
(2003) 17-32. 

[35] S. Rhea, T. Roscoe, and J. Kubiatowicz, Structured Peer-to-Peer Overlays Need Application-Driven 
Benchmarks, Proc. 2nd Int'l Workshop on Peer-to-Peer Systems IPTPS'03, February 20-21 2003. 

[36] D. Loguinov, A. Kumar, and S. Ganesh, Graph-theoretic analysis of structured peer-to-peer systems:  routing 
distances and fault resilience, Proc. 2003 conference on Applications, Technologies, Architectures and 
Protocols for Computer Communications, August 25-29 2003, pp. 395-406. 

[37] F. Kaashoek and D. Karger, Koorde:  A Simple Degree-optimal Hash Table, Second Int'l Workshop on Peer-
to-Peer Systems IPTPS'03, 20-21 February 2003. 

[38] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman, SkipNet: A Scalable Overlay Network with 
Practical Locality Properties, Proc. Fourth USENIX Symp. on Internet Technologies and Systems USITS'03, 
March 2003. 

[39] I. Gupta, K. Birman, P. Linga, A. Demers, and R. Van Renesse, Kelips:  Building an efficient and stable P2P 
DHT through increased memory and background overhead, Second Int'l Workshop on Peer-to-Peer Systems 
IPTPS 03, Feb 20-21 2003. 

[40] J. Cates, Robust and Efficient Data Management for a Distributed Hash Table, Master's Thesis, May 2003. 
[41] J. Aspnes and G. Shah, Skip graphs, Proc. 14th annual ACM-SIAM symposium on discrete algorithms (2003) 

384-393. 
[42] K. Aberer, P. Cudre-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva, and R. Schmidt, P-Grid:  

a self-organizing structured P2P system, ACM SIGMOD Record 32 (3) (2003) 29-33. 



J. Risson and T.Moors                  43 

[43] B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatowicz, Brocade: landmark routing on overlay networks, 
First Int'l Workshop on Peer-to-Peer Systems IPTPS'02, March 2002. 

[44] S. Ratnasamy, S. Shenker, and I. Stoica, Routing algorithms for DHTs:  some open questions, Proc. First Int'l 
Workshop on Peer to Peer Systems, IPTPS 2002, March 2002. 

[45] P. Maymounkov and D. Mazieres, Kademlia:  A peer-to-peer information system based on the XOR metric, 
Proc. First Int'l Workshop on Peer to Peer Systems, IPTPS 2002, March 7-8 2002. 

[46] D. Malkhi, M. Naor, and D. Ratajczak, Viceroy:  a scalable and dynamic emulation of the butterfly, Proc. 21st 
annual symposium on principles of distributed computing PODC, July 21-24 2002, pp. 183-192. 

[47] X. Li and C. Plaxton, On name resolution in peer to peer networks, Proc. ACM SIGACT Annual Workshop 
on Principles of Mobile Computing POMC'02 2002, pp. 82-89. 

[48] N. Harvey, J. Dunagan, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman, SkipNet:  A Scalable overlay 
Network with Practical Locality Properties, Microsoft Research Technical Report MSR-TR-2002-92 (2002) 

[49] D. Karger, E. Lehman, T. Leighton, R. Panigraphy, M. Levin, and D. Lewin, Consistent hashing and random 
trees:  distributed caching protocols for relieving hot spots on the World  Wide Web, ACM Symp. on Theory 
of Computing (1997) 

[50] W. Litwin, M. Neimat, and D. Schneider, LH* - a scalable, distributed data structure, ACM Trans. on 
Database Systems (TODS) 21 (4) (1996) 480-525. 

[51] R. Devine, Design and Implementation of DDH: A Distributed Dynamic Hashing Algorithm, Proc.  4th Int'l 
Conf. on Foundations of Data Organizations and Algorithms 1993. 

[52] W. Litwin, M.-A. Niemat, and D. Schneider, LH* - Linear Hashing for Distributed Files, Proc.  ACM Int'l 
Conf. on Management of Data SIGMOD, May 1993. 

[53] C. Tempich, S. Staab, and A. Wranik, Remindin': semantic query routing in peer-to-peer networks, Proc. 13th 
conference on World Wide Web, New York, NY, USA, May 17-20 (2004) 640-649. 

[54] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein, The case for a hybrid P2P search infrastructure, The 
3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 

[55] M. Cai and M. Frank, RDFPeers: a scalable distributed RDF repository based on a structured peer-to-peer 
network, Proc. 13th conference on World Wide Web, May 17-20 2004, pp. 650-657. 

[56] Z. Zhang, S.-M. Shi, and J. Zhu, SOMO: Self-organized metadata overlay for resource management in P2P 
DHTs, Second Int'l Workshop on Peer-to-Peer Systems IPTPS'03, Feb 20-21 2003. 

[57] B. Yang and H. Garcia-Molina, Designing a super-peer network, Proc. 19th Int'l Conf. on Data Engineering 
ICDE, March 2003. 

[58] I. Tatarinov, P. Mork, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N. Dalvi, X. Dong, Y. Kadiyska, and G. 
Miklau, The Piazza peer data management project, ACM SIGMOD Record 32 (3) (2003) 47-52. 

[59] W. Nejdl, W. Siberski, and M. Sintek, Design Issues and Challenges for RDF- and schema-based peer-to-peer 
systems, ACM SIGMOD Record 32 (3) (2003) 41-46. 

[60] S. Joseph and T. Hoshiai, Decentralized Meta-Data Strategies: Effective Peer-to-Peer Search, IEICE Trans. 
Commun. E86-B (6 June) (2003) 1740-1753. 

[61] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, Making gnutella-like P2P systems 
scalable, Proc. 2003 conference on Applications, Technologies, Architectures and Protocols for Computer 
Communications, August 25-29 2003, pp. 407-418. 

[62] M. Bawa, G. S. Manku, and P. Raghavan, SETS: search enhanced by topic segmentation, Proc. 26th annual 
international ACM SIGIR conference on Research and Development in Information Retrieval 2003, pp. 306-
313. 

[63] H. Sunaga, M. Takemoto, and T. Iwata, Advanced peer to peer network platform for various services - 
SIONet Semantic Information Oriented Network, Proc. Second Int'l Conf. on Peer to Peer Computing, Sept 5-
7 2002, pp. 169-170. 

[64] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, HyperCuP - Hypercubes, Ontologies and P2P Networks, 
Springer Lecture Notes on Computer Science, Agents and Peer-to-Peer Systems Vol. 2530 (2002) 

[65] M. Ripeanu, A. Iamnitchi, and P. Foster, Mapping the Gnutella network, IEEE Internet Computing 6 (1) 
(2002) 50-57. 

[66] Q. Lv, S. Ratnasamy, and S. Shenker, Can Heterogeneity Make Gnutella Scalable?, Proc. 1st Int'l Workshop 
on Peer-to-Peer Systems IPTPS2002, March 7-8 2002. 

[67] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, Search and replication in unstructured peer to peer networks, 
Proc. 16th international conference on supercomputing, June 22-26 2002, pp. 84-95. 

[68] V. Kalogaraki, D. Gunopulos, and D. Zeinalipour-Yasti, XML schemas:  integration and translation:  A local 
search mechanism for peer to peer networks, Proc. 11th ACM international conference on Information and 
Knowledge management 2002, pp. 300-307. 

[69] O. Babaoglu, H. Meling, and Montresor, Anthill:  a framework for the development of agent-based peer-to-
peer systems, Proc.  IEEE Int'l Conf. on Distributed Computer systems 2002, pp. 15-22. 

[70] M. Jovanovic, Modeling large-scale peer-to-peer networks and a case study of Gnutella, Master's Thesis 2001. 



44                J. Risson and T. Moors

[71] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, Freenet:  A Distributed Anonymous Information Storage and 
Retrieval System. Springer, New York, USA, 2001. 

[72] J. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica, Complex queries in DHT-based peer-
to-peer networks, Proc. First Int'l Workshop on Peer to Peer Systems IPTPS 2002, March 2002. 

[73] B. Gedik and L. Liu, PeerCQ: A Decentralized and Self-Configuring Peer-to-Peer Information Monitoring 
System, Proc. 23rd Int'l Conf. on Distributed Computing Systems ICDCS2003, May 19-22 2003. 

[74] B. T. Loo, R. Huebsch, J. M. Hellerstein, T. Roscoe, and I. Stoica, Analyzing P2P Overlays with Recursive 
Queries, Technical Report, CSD-04-1301, January 14 2004. 

[75] R. Avnur and J. Hellerstein, Eddies: continuously adaptive query processing, Proc. 2000 ACM SIGMOD 
international conference on Management of Data 2000, pp. 261-272. 

[76] P. Triantafillou and T. Pitoura, Towards a unifying framework for complex query processing over structured 
peer-to-peer data networks, Proc. First Int'l Workshop on Databases, Information Systems and Peer-to-Peer 
Computing DBISP2P, Sept 7-8 2003, pp. 169-183. 

[77] A. Gupta, D. Agrawal, and A. E. Abbadi, Approximate range selection queries in peer-to-peer systems, Proc. 
First Biennial Conf. on Innovative Data Systems Research CIDR 2003 2003. 

[78] S. Ratnasamy, P. Francis, and M. Handley, Range queries in DHTs, Technical Report IRB-TR-03-009, July 
2003. 

[79] S. Ramabhadran, S. Ratnasamy, J. Hellerstein, and S. Shenker, Brief announcement: prefix hash tree, Proc. 
23rd Annual ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, PODC 2004, July 25-
28 2004, pp. 368-368. 

[80] A. Andrzejak and Z. Xu, Scalable, efficient range queries for grid information services, Proc. Second IEEE 
Int'l Conf. on Peer to Peer Computing, September 2002. 

[81] C. Schmidt and M. Parashar, Enabling flexible queries with guarantees in P2P systems, IEEE Internet 
Computing 8 (3) (2004) 19-26. 

[82] E. Tanin, A. Harwood, and H. Samet, Indexing distributed complex data for complex queries, Proc. National 
Conf. on Digital Government Research 2004, pp. 81-90. 

[83] P. Ganesan, M. Bawa, and H. Garcia-Molina, Online Balancing of Range-Partitioned Data with Applications 
to Peer-to-Peer Systems, Proc. 30th Int'l Conf. on Very Large Data Bases VLDB 2004, 29 August - 3 
September 2004. 

[84] A. Bharambe, M. Agrawal, and S. Seshan, Mercury: Supporting Scalable Multi-Attribute Range Queries, 
SIGCOMM'04, Aug 30-Sept 3 2004. 

[85] K. Aberer, Scalable Data Access in P2P Systems Using Unbalanced Search Trees, Workshop on Distributed 
Data and Structures WDAS-2002 2002. 

[86] K. Aberer, A. Datta, and M. Hauswirth, The Quest for Balancing Peer Load in Structured Peer-to-Peer 
Systems, Technical Report IC/2003/32 2003. 

[87] W. Litwin, M.-A. Neimat, and D. Schneider, RP*: a family of order-preserving scalable distributed data 
structures, Proc. 20th Int'l Conf. on Very Large Data Bases VLDB'94, September 12-15 1994. 

[88] M. Tsangou, S. Ndiaye, M. Seck, and W. Litwin, Range queries to scalable distributed data structure RP*, 
Proc. Fifth Workshop on Distributed Data and Structures, WDAS 2003, June 2003. 

[89] W. Litwin and M.-A. Neimat, k-RP*s: a scalable distributed data structure for high-performance multi-
attributed access, Proc. Fourth Int'l Conf. on Parallel and Distributed Information Systems (1996) 120-131. 

[90] T. Hodes, S. Czerwinski, B. Zhao, A. Joseph, and R. Katz, An architecture for secure wide-area service 
discovery, Wireless Networks 8 (2/3) (2002) 213-230. 

[91] M. Cai, M. Frank, J. Chen, and P. Szekely, MAAN: A Multi-Attribute Addressable Network for Grid 
Information Services, Proc. Int'l Workshop on Grid Computing, November 2003. 

[92] R. van Renesse, K. P. Birman, and W. Vogels, Astrolabe:  A robust and scalable technology for distribute 
system monitoring, management and data mining, ACM Trans. on Computer Systems 21 (2) (2003) 164-206. 

[93] R. Bhagwan, G. Varghese, and G. Voelker, Cone: Augmenting DHTs to support distributed resource 
discovery, Technical Report, CS2003-0755, July 2003. 

[94] K. Albrecht, R. Arnold, and R. Wattenhofer, Join and Leave in Peer-to-Peer Systems: The DASIS Approach, 
Technical Report 427, Department of Computer Science, November 2003. 

[95] K. Albrecht, R. Arnold, and R. Wattenhofer, Aggregating Information in Peer-to-Peer Systems for Improved 
Join and Leave, Proc. Fourth IEEE Int'l Conf. on Peer-to-Peer Computing, 25-27 August 2004. 

[96] A. Montresor, M. Jelasity, and O. Babaoglu, Robust aggregation protocol for large-scale overlay networks, 
Technical Report UBLCS-2003-16, December 2003. 

[97] M. Jelasity, W. Kowalczyk, and M. van Steen, An Approach to Aggregation in Large and Fully Distributed 
Peer-to-Peer Overlay Networks, Proc. 12th Euromicro Conf. on Parallel, Distributted and Network based 
Processing PDP 2004, February 2004. 

[98] P. Yalagandula and M. Dahlin, A scalable distributed information management system, SIGCOMM'04, Aug 
30-Sept 3 2004. 



J. Risson and T.Moors                  45 

[99] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani, The price of validity in dynamic networks, Proc. 
2004 ACM SIGMOD Int'l Conf. on the management of data 2004, pp. 515-526. 

[100] J. Aspnes, J. Kirsch, and A. Krishnamurthy, Load Balancing and Locality in Range-Queriable Data 
Structures, Proc. 23rd Annual ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing PODC 
2004, July 25-28 2004. 

[101] G. On, J. Schmitt, and R. Steinmetz, The effectiveness of realistic replication strategies on quality of 
availability for peer-to-peer systems, Proc. Third Int'l IEEE Conf. on Peer-to-Peer Computing, Sept 1-3 2003, 
pp. 57-64. 

[102] D. Geels and J. Kubiatowicz, Replica management should be a game, Proc. SIGOPS European Workshop, 
September 2003. 

[103] E. Cohen and S. Shenker, Replication strategies in unstructured peer to peer networks, Proc. 2002 conference 
on applications, technologies, architectures and protocols for computer communications 2002, pp. 177-190. 

[104] E. Cohen and S. Shenker, P2P and multicast:  replication strategies in unstructured peer to peer networks, 
Proc. 2002 conference on applications, technologies, architectures and protocols for computer 
communications 2002, pp. 177-190. 

[105] H. Weatherspoon and J. Kubiatowicz, Erasure coding vs replication:  a quantative comparison, Proc. First Int'l 
Workshop on Peer to Peer Systems IPTPS'02, March 2002. 

[106] D. Lomet, Replicated indexes for distributed data, Proc. Fourth Int'l Conf. on Parallel and Distributed 
Information Systems, December 18-20 1996, pp. 108-119. 

[107] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher, Adaptive Replication in Peer-to-Peer 
Systems, Proc. 24th Int'l Conf. on Distributed Computing Systems ICDCS 2004, March 23-26 2004. 

[108] S.-D. Lin, Q. Lian, M. Chen, and Z. Zhang, A practical distributed mutual exclusion protocol in dynamic 
peer-to-peer systems, The 3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 

[109] A. Adya, R. Wattenhofer, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur, J. Howell, J. Lorch, 
and M. Thiemer, Farsite: federated, available and reliable storage for an incompletely trusted environment, 
ACM SIGOPS Operating Systems Review, Special issue on Decentralized storage systems (2002) 1-14. 

[110] A. Rowstron and P. Druschel, Storage management and caching in PAST, a large-scale, persistent peer-to-
peer storage utility, Proceedings ACM SOSP'01, October 2001, pp. 188-201. 

[111] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. Kubiatowicz, Maintenance-Free 
Global Data Storage, IEEE Internet Computing 5 (5) (2001) 40-49. 

[112] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. 
Weatherspoon, W. Weimer, C. Wells, and B. Zhao, Oceanstore:  An Architecture for global-scale persistent 
storage, Proc. Ninth Int'l Conf. on Architecture Support for Programming Languages and Operating Systems 
ASPLOS 2000, November 2000, pp. 190-201. 

[113] K. Birman, The Surprising Power of Epidemic Communication, Springer-Verlag Heidelberg Lecture Notes in 
Computer Science Volume 2584/2003 (2003) 97-102. 

[114] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola, Introducing reliability in content-based publish-
subscribe through epidemic algorithms, Proc. 2nd international workshop on Distributed event-based systems 
2003, pp. 1-8. 

[115] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola, Epidemic Algorithms for Reliable Content-Based 
Publish-Subscribe:  An Evaluation, The 24th Int'l Conf. on Distributed Computing Systems (ICDCS-2004), 
Mar 23-26, Tokyo University of Technology, Hachioji, Tokyo, Japan (2004) 

[116] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry, 
Epidemic Algorithms for Replicated Data Management, Proc. Sixth ACM Symp. on Principles of Distributed 
Computing 1987, pp. 1-12. 

[117] P. Eugster, R. Guerraoiu, A. Kermarrec, and L. Massoulie, Epidemic information dissemination in distributed 
systems, IEEE Computer 37 (5) (2004) 60-67. 

[118] W. Vogels, R. v. Renesse, and K. Birman, The power of epidemics:  robust communication for large-scale 
distributed systems, ACM SIGCOMM  Computer Communication Review 33 (1) (2003) 131-135. 

[119] S. Voulgaris and M. van Steen, An epidemic protocol for managing routing tables in very large peer to peer 
networks, Proc. 14th IFIP/IEEE Workshop on Distributed Systems: Operations and Management, October 
2003. 

[120] I. Gupta, On the design of distributed protocols from differential equations, Proc. 23rd Annual ACM 
SIGACT-SIGOPS Symp. on Principles of Distributed Computing PODC 2004, July 25-28 2004, pp. 216-225. 

[121] I. Gupta, K. P. Birman, and v. Renesse, Fighting Fire with Fire: Using randomized Gossip to combat 
stochastic scalability limits, Cornell University Dept of Computer Science Technical Report, March 2001. 

[122] K. Birman and I. Gupta, Building Scalable Solutions to Distributed Computing Problems using Probabilistic 
Components, Submitted to the Int'l Conf. on Dependable Systems and Networks DSN-2004, Dependable 
Computing and Computing Symp. DCCS, June 28-July 1 2004. 



46                J. Risson and T. Moors

[123] A. Ganesh, A.-M. Kermarrec, and L. Massoulie, Peer-to-peer membership management for gossip-based 
protocols, IEEE Trans. on Computers 52 (2) (2003) 139-149. 

[124] N. Bailey, Epidemic Theory of Infectious Diseases and its Applications, Second Edition ed. Hafner Press, 
1975. 

[125] P. Eugster, R. Guerraoiu, S. Handurukande, P. Kouznetsov, and A.-M. Kermarrec, Lightweight Probabilistic 
Broadcast, ACM Trans. on Computer Systems 21 (4) (2003) 341-374. 

[126] H. Weatherspoon and J. Kubiatowicz, Efficient heartbeats and repair of softstate in decentralized object 
location and routing systems, Proc. SIGOPS European Workshop, September 2002. 

[127] G. Koloniari and E. Pitoura, Content-based Routing of Path Queries in Peer-to-Peer Systems, Proc. 9th Int'l 
Conf. on Extending DataBase Technology EDBT, March 14-18 2004. 

[128] A. Mohan and V. Kalogaraki, Speculative routing and update propagation: a kundali centric approach, IEEE 
Int'l Conf. on Communications ICC'03, May 2002. 

[129] G. Koloniari, Y. Petrakis, and E. Pitoura, Content-Based Overlay Networks for XML Peers Based on Multi-
Level Bloom Filters, Proc. First Int'l Workshop on Databases, Information Systems and Peer-to-Peer 
Computing DBISP2P, Sept 7-8 2003, pp. 232-247. 

[130] G. Koloniari and E. Pitoura, Bloom-Based Filters for Hierarchical Data, Proc. 5th Workshop on Distributed 
Data and Structures (WDAS) (2003) 

[131] B. Bloom, Space/time trade-offs in hash coding with allowable errors, Communications of the ACM 13 (7) 
(1970) 422-426. 

[132] M. Naor and U. Wieder, A Simple Fault Tolerant Distributed Hash Table, Second Int'l Workshop on Peer-to-
Peer Systems (IPTPS 03), Berkeley, CA, USA, 20-21 February (2003) 

[133] P. Maymounkov and D. Mazieres, Rateless codes and big downloads, Second Int'l Workshop on Peer-to-Peer 
Systems, IPTPS'03, February 20-21 2003. 

[134] M. Krohn, M. Freedman, and D. Mazieres, On-the-fly verification of rateless erasure codes for efficient 
content distribution, Proc. IEEE Symp. on Security and Privacy, May 2004. 

[135] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, Informed content delivery across adaptive overlay 
networks, Proc. 2002 conference on applications, technologies, architectures and protocols for computer 
communications 2002, pp. 47-60. 

[136] J. Plank, S. Atchley, Y. Ding, and M. Beck, Algorithms for High Performance, Wide-Area Distributed File 
Downloads, Parallel Processing Letters 13 (2) (2003) 207-223. 

[137] M. Castro, P. Rodrigues, and B. Liskov, BASE:  Using abstraction to improve fault tolerance, ACM Trans. on 
Computer Systems 21 (3) (2003) 236-269. 

[138] R. Rodrigues, B. Liskov, and L. Shrira, The design of a robust peer-to-peer system, 10th ACM SIGOPS 
European Workshop, Sep 2002. 

[139] H. Weatherspoon, T. Moscovitz, and J. Kubiatowicz, Introspective failure analysis: avoiding correlated 
failures in peer-to-peer systems, Proc.  Int'l Workshop on Reliable Peer-to-Peer Distributed Systems, Oct 
2002. 

[140] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, Vivaldi: A Decentralized Network Coordinate System, 
SIGCOMM'04, Aug 30-Sept 3 2004. 

[141] E.-K. Lua, J. Crowcroft, and M. Pias, Highways: proximity clustering for massively scaleable peer-to-peer 
network routing, Proc. Fourth IEEE Int'l Conf. on Peer-to-Peer Computing, August 25-27 2004. 

[142] F. Fessant, S. Handurukande, A.-M. Kermarrec, and L. Massoulie, Clustering in Peer-to-Peer File Sharing 
Workloads, The 3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 

[143] T. S. E. Ng and H. Zhang, Predicting internet network distance with coordinates-based approaches, IEEE 
Infocom 2002, The 21st Annual Joint Conf. of the IEEE Computer and Communication Societies, June 23-27 
2002. 

[144] K. Hildrum, R. Krauthgamer, and J. Kubiatowicz, Object Location in Realistic Networks, Proc. Sixteenth 
ACM Symp. on Parallel Algorithms and Architectures (SPAA 2004), June 2004, pp. 25-35. 

[145] P. Keleher, S. Bhattacharjee, and B. Silaghi, Are Virtualized Overlay Networks Too Much of a Good Thing?, 
First Int'l Workshop on Peer-to-Peer Systems IPTPS, March 2002. 

[146] A. Mislove and P. Druschel, Providing administrative control and autonomy in structured peer-to-peer 
overlays, The 3rd Int'l Workshop on Peer-to-Peer Systems, June 9-12 2004. 

[147] D. Karger and M. Ruhl, Diminished Chord: A Protocol for Heterogeneous SubGroup Formation in Peer-to-
Peer Networks, The 3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 

[148] B. Awerbuch and C. Scheideler, Consistent, order-preserving data management in distributed storage systems, 
Proc. Sixteenth ACM Symp. on Parallel Algorithms and Architectures SPAA 2004, June 27-30 2004, pp. 44-
53. 

[149] M. Freedman and D. Mazieres, Sloppy Hashing and Self-Organizing Clusters, Proc. 2nd Int'l Workshop on 
Peer-to-Peer Systems IPTPS '03, February 2003. 



J. Risson and T.Moors                  47 

[150] F. Dabek, J. Li, E. Sit, J. Robertson, F. Kaashoek, and R. Morris, Designing a DHT for low latency and high 
throughput, Proc. First Symp. on Networked Systems Design and Implementation (NSDI'04), San Francisco, 
California, March 29-31 (2004) 85-98. 

[151] M. Ruhl, Efficient algorithms for new computational models, Doctoral Dissertation, September 2003. 
[152] K. Sollins, Designing for scale and differentiation, Proc. ACM SIGCOMM workshop on Future Directions in 

network architecture, August 25-27 2003. 
[153] L. Massoulie, A. Kermarrec, and A. Ganesh, Network awareness and failure resilience in self-organizing 

overlay networks, Proc. 22nd Int'l Symp. on Reliable Distributed Systems, SRDS'03, Oct 6-8 2003, pp. 47-55. 
[154] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris, Practical,distributed network coordinates, ACM 

SIGCOMM  Computer Communication Review 34 (1) (2004) 113-118. 
[155] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao, Distributed object location in a dynamic network, Proc. 

14th annual ACM symposium on parallel algorithms and architectures 2002, pp. 41-52. 
[156] X. Zhang, Q. Zhang, G. Song, and W. Zhu, A Construction of Locality-Aware Overlay Network: mOverlay 

and its Performance, IEEE Journal on Selected Areas in Communications 22 (1) (2004) 18-28. 
[157] N. Harvey, M. B. Jones, M. Theimer, and A. Wolman, Efficient recovery from organization disconnects in 

Skipnet, Second Int'l Workshop on Peer-to-Peer Systems IPTPS'03, Feb 20-21 2003. 
[158] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti, Lighthouses for scalable distributed location, 

Second Int'l Workshop on Peer-to-Peer Systems IPTPS'03, February 20-21 2003. 
[159] K. Gummadi, S. Saroui, S. Gribble, and D. King, Estimating latency between arbitrary internet end hosts, 

Proc.  SIGCOMM IMW 2002, November 2002. 
[160] Y. Liu, X. Liu, L. Xiao, L. Ni, and X. Zhang, Location-aware topology matching in P2P systems, Proc.   IEEE 

Infocomm, Mar 7-11 2004. 
[161] G. S. Manku, Balanced binary trees for ID management and load balance in distributed hash tables, Proc. 23rd 

Annual ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, PODC 2004, July 25-28 
2004, pp. 197-205. 

[162] J. Gao and P. Steenkiste, Design and Evaluation of a Distributed Scalable Content Delivery System, IEEE 
Journal on Selected Areas in Communications 22 (1) (2004) 54-66. 

[163] X. Wang, Y. Zhang, X. Li, and D. Loguinov, On zone-balancing of peer-to-peer networks: analysis of random 
node join, Proc. joint international conference on measurement and modeling of computer systems, June 2004. 

[164] D. Karger and M. Ruhl, Simple efficient load balancing algorithms for peer-to-peer systems, Proc. Sixteenth 
ACM Symp. on Parallel Algorithms and Architectures SPAA 2004, June 27-30 2004. 

[165] D. Karger and M. Ruhl, Simple efficient load balancing algorithms for peer-to-peer systems, The 3rd Int'l 
Workshop on Peer-to-Peer Systems, February 26-27 2004. 

[166] M. Adler, E. Halperin, R. Karp, and V. Vazirani, A stochastic process on the hypercube with applications to 
peer-to-peer networks, Proc. 35th ACM symposium on Theory of Computing 2003, pp. 575-584. 

[167] C. Baquero and N. Lopes, Towards peer to peer content indexing, ACM SIGOPS Operating Systems Review 
37 (4) (2003) 90-96. 

[168] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, Load balancing in structured P2P systems, 
Proc. 2nd Int'l Workshop on Peer-to-Peer Systems, IPTPS'03, February 20-21 2003. 

[169] J. Byers, J. Considine, and M. Mitzenmacher, Simple Load Balancing for Distributed Hash Tables, Second 
Int'l Workshop on Peer-to-Peer Systems IPTPS 03, 20-21 February 2003. 

[170] P. Castro, J. Lee, and A. Misra, CLASH: A Protocol for Internet-Scale Utility-Oriented Distributed 
Computing, Proc. 24th Int'l Conf. on Distributed Computing Systems ICDCS 2004, March 23-26 2004. 

[171] A. Stavrou, D. Rubenstein, and S. Sahu, A Lightwight, Robust P2P System to Handle Flash Crowds, IEEE 
Journal on Selected Areas in Communications 22 (1) (2004) 6-17. 

[172] A. Selcuk, E. Uzun, and M. R. Pariente, A reputation-based trust management system for P2P networks, 
Fourth Int'l Workshop on Global and Peer-to-Peer Computing, April 20-21 2004. 

[173] T. Papaioannou and G. Stamoulis, Effective use of reputation in peer-to-peer environments, Fourth Int'l 
Workshop on Global and Peer-to-Peer Computing, April 20-21 2004. 

[174] M. Blaze, J. Feigenbaum, and J. Lacy, Trust and Reputation in P2P networks, 
http://www.neurogrid.net/twiki/bin/view/Main/ReputationAndTrust (2003) 

[175] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Violante, A reputation-based approach for 
choosing reliable resources in peer to peer networks, Proc. 9th conference on computer and communications 
security 2002, pp. 207-216. 

[176] S. Marti, P. Ganesan, and H. Garcia-Molina, DHT routing using social links, The 3rd Int'l Workshop on Peer-
to-Peer Systems, February 26-27 2004. 

[177] G. Caronni and M. Waldvogel, Establishing trust in distributed storage providers, Proc. Third Int'l IEEE Conf. 
on Peer-to-Peer Computing, 1-3 Sept 2003, pp. 128-133. 

[178] B. Sieka, A. Kshemkalyani, and M. Singhal, On the security of polling protocols in peer-to-peer systems, 
Proc. Fourth IEEE Int'l Conf. on Peer-to-Peer Computing, 25-27 August 2004. 



48                J. Risson and T. Moors

[179] M. Feldman, K. Lai, I. Stoica, and J. Chuang, Robust Incentive Techniques for Peer-to-Peer Networks, ACM 
E-Commerce Conf. EC'04, May 2004. 

[180] K. Anagnostakis and M. Greenwald, Exchange-based Incentive Mechanism for Peer-to-Peer File Sharing, 
Proc. 24th Int'l Conf. on Distributed Computing Systems ICDCS 2004, March 23-26 2004. 

[181] J. Schneidman and D. Parkes, Rationality and self-Interest in peer to peer networks, Second Int'l Workshop on 
Peer-to-Peer Systems IPTPS'03, February 20-21 2003. 

[182] C. Buragohain, D. Agrawal, and S. Subhash, A game theoretic framework for incentives in P2P systems, Proc. 
Third Int'l IEEE Conf. on Peer-to-Peer Computing, 1-3 Sept 2003, pp. 48-56. 

[183] W. Josephson, E. Sirer, and F. Schneider, Peer-to-Peer Authentication with a Distributed Single Sign-On 
Service, The 3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 

[184] A. Fiat and J. Saia, Censorship resistant peer to peer content addressable networks, Proc. 13th annual ACM-
SIAM symposium on discrete algorithms 2002, pp. 94-103. 

[185] N. Daswani and H. Garcia-Molina, Query-flood DoS attacks in gnutella, Proc. 9th ACM Conf. on Computer 
and Communications Security 2002, pp. 181-192. 

[186] A. Singh and L. Liu, TrustMe: anonymous management of trust relationships in decentralized P2P systems, 
Proc. Third Int'l IEEE Conf. on Peer-to-Peer Computing, Sept 1-3 2003. 

[187] A. Serjantov, Anonymizing censorship resistant systems, Proc. Second Int'l Conf. on Peer to Peer Computing, 
March 2002. 

[188] S. Hazel and B. Wiley, Achord: A Variant of the Chord Lookup Service for Use in Censorship Resistant Peer-
to-Peer Publishing Systems, Proc. Second Int'l Conf. on Peer to Peer Computing, March 2002. 

[189] M. Freedman and R. Morris, Tarzan: a peer-to-peer anonymizing network layer, Proc. 9th ACM Conf. on 
Computer and Communications Security (2002) 193-206. 

[190] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, Free-Riding and Whitewashing in Peer-to-Peer 
Systems, 3rd Annual Workshop on Economics and Information Security WEIS04, May 2004. 

[191] L. Ramaswamy and L. Liu, FreeRiding: a new challenge for peer-to-peer file sharing systems, Proc. 2003 
Hawaii Int'l Conf. on System Sciences, P2P Track, HICSS2003, January 6-9 2003. 

[192] T.-W. Ngan, D. Wallach, and P. Druschel, Enforcing fair sharing of peer-to-peer resources, Second Int'l 
Workshop on Peer-to-Peer Systems, IPTPS'03, 20-21 February 2003. 

[193] L. Cox and B. D. Noble, Samsara: honor among thieves in peer-to-peer storage, Proc. nineteenth ACM 
symposium on Operating System Principles 2003, pp. 120-132. 

[194] M. Surridge and C. Upstill, Grid security: lessons for peer-to-peer systems, Proc. Third Int'l IEEE Conf. on 
Peer-to-Peer Computing, Sept 1-3 2003, pp. 2-6. 

[195] E. Sit and R. Morris, Security considerations for peer-to-peer distributed hash tables, First Int'l Workshop on 
Peer-to-Peer Systems, March 2002. 

[196] C. O'Donnel and V. Vaikuntanathan, Information leak in the Chord lookup protocol, Proc. Fourth IEEE Int'l 
Conf. on Peer-to-Peer Computing, 25-27 August 2004. 

[197] K. Berket, A. Essiari, and A. Muratas, PKI-Based Security for Peer-to-Peer Information Sharing, Proc. Fourth 
IEEE Int'l Conf. on Peer-to-Peer Computing, 25-27 August 2004. 

[198] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker, Spurring adoption of DHTs with OpenHash, a public DHT 
service, The 3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 

[199] J. Considine, M. Walfish, and D. G. Andersen, A pragmatic approach to DHT adoption, Technical Report,, 
December 2003. 

[200] G. Li, Peer to Peer Networks in Action, IEEE Internet Computing 6 (1) (2002) 37-39. 
[201] A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D. Wallach, X. Bonnaire, P. Sens, J.-M. Busca, and 

L. Arantes-Bezerra, POST:  A Secure, Resilient, Cooperative Messaging System, 9th Workshop on Hot 
Topics in Operating Systems, HotOS, May 2003. 

[202] S. Saroiu, P. Gummadi, and S. Gribble, A measurement study of peer-to-peer file sharing systems, Proc.  
Multimedia Computing and Networking 2002 MMCN'02, January 2002. 

[203] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen, Ivy: a read/write peer-to-peer file system, ACM SIGOPS 
Operating Systems Review, Special issue on Decentralized storage systems, December 2002, pp. 31-44. 

[204] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen, A read/write peer-to-peer file system, Proc. 5th Symp. on 
Operating System Design and Implementation (OSDI 2002), Boston, MA, December (2002) 

[205] F. Annexstein, K. Berman, M. Jovanovic, and K. Ponnavaikko, Indexing techniques for file sharing in 
scalable peer to peer networks, 11th IEEE Int'l Conf. on Computer Communications and Networks (2002) 10-
15. 

[206] G. Kan and Y. Faybishenko, Introduction to Gnougat, First Int'l Conf. on Peer-to-Peer Computing 2001 2001, 
pp. 4-12. 

[207] R. Gold and D. Tidhar, Towards a content-based aggregation network, Proc. First Int'l Conf. on Peer to Peer 
Compuuting 2001, pp. 62-68. 



J. Risson and T.Moors                  49 

[208] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, Wide-area cooperative storage with CFS, 
Proc. 18th ACM symposium on Operating System Principles 2001, pp. 202-215. 

[209] M. Freedman, E. Freudenthal, and D. Mazieres, Democratizing Content Publication with Coral, Proc. First 
Symp. on Networked Systems Design and Implementation NSDI'04, March 29-31 2004, pp. 239-252. 

[210] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and R. Morris, On the Feasibility of Peer-to-Peer Web 
Indexing and Search, Second Int'l Workshop on Peer-to-Peer Systems IPTPS 03, 20-21 February 2003. 

[211] S. Iyer, A. Rowstron, and P. Druschel, Squirrel: a decentralized peer-to-peer web cache, Proc. 21st annual 
symposium on principles of distributed computing 2002, pp. 213-222. 

[212] M. Bawa, R. Bayardo, S. Rajagopalan, and E. Shekita, Make it fresh, make it quick: searching a network of 
personal webservers, Proc. 12th international conference on World Wide Web 2003, pp. 577-586. 

[213] B. T. Loo, S. Krishnamurthy, and O. Cooper, Distributed web crawling over DHTs, Technical Report, CSD-
04-1305, February 9 2004. 

[214] M. Junginger and Y. Lee, A self-organizing publish/subscribe middleware for dynamic peer-to-peer networks, 
IEEE Network 18 (1) (2004) 38-43. 

[215] F. Cuenca-Acuna, C. Peery, R. Martin, and T. Nguyen, PlanetP:  Using Gossiping to Build Content 
Addressable Peer-to-Peer Information Sharing Communities, Proc. 12th international symposium on High 
Performance Distributed Computing (HPDC), June 2002. 

[216] M. Walfish, H. Balakrishnan, and S. Shenker, Untangling the web from DNS, Proc. First Symp. on 
Networked Systems Design and Implementation NSDI'04, March 29-31 2004, pp. 225-238. 

[217] B. Awerbuch and C. Scheideler, Robust distributed name service, The 3rd Int'l Workshop on Peer-to-Peer 
Systems, February 26-27 2004. 

[218] A. Iamnitchi, Resource Discovery in Large Resource-Sharing Environments, Doctoral Dissertation 2003. 
[219] R. Cox, A. Muthitacharoen, and R. Morris, Serving DNS using a Peer-to-Peer Lookup Service, First Int'l 

Workshop on Peer-to-Peer Systems (IPTPS), March 2002. 
[220] A. Chander, S. Dawson, P. Lincoln, and D. Stringer-Calvert, NEVRLATE:  scalable resource discovery, 

Second IEEE/ACM Int'l Symp. on Cluster Computing and the Grid CCGRID2002 2002, pp. 56-65. 
[221] M. Balazinska, H. Balakrishnan, and D. Karger, INS/Twine:  A scalable Peer-to-Peer architecture for 

Intentional Resource Discovery, Proc. First Int'l Conf. on Pervasive Computing (IEEE) (2002) 
[222] J. Kangasharju, K. Ross, and D. Turner, Secure and resilient peer-to-peer E-mail: design and implementation, 

Proc. Third Int'l IEEE Conf. on Peer-to-Peer Computing, 1-3 Sept 2003. 
[223] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao, Cluster computing on the fly: P2P scheduling of idle cycles 

in the internet, The 3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 
[224] A. Iamnitchi, I. Foster, and D. Nurmi, A peer-to-peer approach to resource discovery in grid environments, 

IEEE High Performance Distributed Computing 2002. 
[225] I. Foster and A. Iamnitchi, On Death, Taxes and the Convergence of Peer-to-Peer and Grid Computing, 

Second Int'l Workshop on Peer-to-Peer Systems IPTPS 03, 20-21 February 2003. 
[226] W. Hoschek, Peer-to-Peer Grid Databases for Web Service Discovery, Concurrency - Practice and Experience 

(2002) 1-7. 
[227] K. Aberer, A. Datta, and M. Hauswirth, A decentralized public key infrastructure for customer-to-customer e-

commerce, Int'l Journal of Business Process Integration and Management (2004) 
[228] S. Ajmani, D. Clarke, C.-H. Moh, and S. Richman, ConChord:  Cooperative SDSI Certificate Storage and 

Name Resolution, First Int'l Workshop on Peer-to-Peer Systems IPTPS, March 2002. 
[229] J. Li, J. Stribling, T. Gil, R. Morris, and F. Kaashoek, Comparing the performance of distributed hash tables 

under churn, The 3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 
[230] S. Shenker, The data-centric revolution in networking, Keynote Speech, 29th Int'l Conf. on Very Large Data 

Bases, September 9-12 2003. 
[231] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu, What can databases do for P2P?, Proc.  Fourth Int'l 

Workshop on Databases and the Web, WebDB2001, May 24-25 2001. 
[232] D. Clark, The design philosophy of the DARPA internet protocols, ACM SIGCOMM Computer 

Communication Review, Symp. proceedings on communications architectures and protocols 18 (4) (1988) 
[233] J.-C. Laprie, Dependable Computing and Fault Tolerance:  Concepts and Terminology, Twenty-Fifth Int'l 

Symp. on Fault-Tolerant Computing, Highlights from Twenty-Five Years 1995, pp. 2-13. 
[234] D. Clark, J. Wroclawski, K. Sollins, and R. Braden, Tussle in cyberspace:  defining tomorrow's internet, Conf. 

on Applications, Technologies, Architectures and Protocols for Computer Communications 2002, pp. 347-
356. 

[235] Clip2, The Gnutella Protocol Specification, http://www.clip2.com (2000) 
[236] Napster, http://www.napster.com (1999) 
[237] J. Mishchke and B. Stiller, A methodology for the design of distributed search in P2P middleware, IEEE 

Network 18 (1) (2004) 30-37. 



50                J. Risson and T. Moors

[238] J. Li and K. Sollins, Implementing aggregation and broadcast over distributed hash tables. Full report, 
http://krs.lcs.mit.edu/regions/docs.html (November) (2003) 

[239] M. Castro, M. Costa, and A. Rowstron, Should we build Gnutella on a structured overlay?, ACM SIGCOMM  
Computer Communication Review 34 (1) (2004) 131-136. 

[240] A. Singla and C. Rohrs, Ultrapeers: Another Step Towards Gnutella Scalability,, 
http://groups.yahoo.com/group/the_gdf/files/Proposals/Working%20Proposals/Ultrapeer/ Version 1.0, 26 
November (2002) 

[241] B. Cooper and H. Garcia-Molina, Ad hoc, Self-Supervising Peer-to-Peer Search Networks, Technical Report, 
http://www.cc.gatech.edu/~cooperb/odin/ 2003. 

[242] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Addison Wesley, Essex, England, 1999. 
[243] S. Sen and J. Wang, Analyzing peer-to-peer traffic across large networks, IEEE/ACM Trans. on Networking 

12 (2) (2004) 219-232. 
[244] H. Balakrishnan, S. Shenker, and M. Walfish, Semantic-Free Referencing in Linked Distributed Systems, 

Second Int'l Workshop on Peer-to-Peer Systems IPTPS 03, 20-21 February 2003. 
[245] B. Yang, P. Vinograd, and H. Garcia-Molina, Evaluating GUESS and non-forwarding peer-to-peer search, 

The 24th Int'l Conf. on Distributed Computing Systems ICDCS'04, Mar 23-26 2004. 
[246] A. Gupta, B. Liskov, and R. Rodrigues, One Hop Lookups for Peer-to-Peer Overlays, 9th Workshop on Hot 

Topics in Operating Systems (HotOS), 18-21 May 2003. 
[247] A. Gupta, B. Liskov, and R. Rodrigues, Efficient Routing for Peer-to-Peer Overlays, First Symp. on 

Networked Systems Design and Implementation NSDI, March 2004. 
[248] A. Mizrak, Y. Cheng, V. Kumar, and S. Savage, Structured superpeers: leveraging heterogeneity to provide 

constant-time lookup, IEEE Workshop on Internet Applications, June 23-24 2003. 
[249] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman, Search in power-law networks, Physical review E, The 

American Physical Society 64 (046135) (2001) 
[250] F. Banaei-Kashani and C. Shahabi, Criticality-based analysis and design of unstructured peer-to-peer 

networks as "complex systems", Proc. 3rd IEEE/ACM Int'l Symp. on Cluster Computing and the Grid 2003, 
pp. 351-358. 

[251] KaZaa, KaZaa Media Desktop, www.kazaa.com (2001) 
[252] S. Sen and J. Wang, Analyzing peer-to-peer traffic across large networks, Proc. second ACM SIGCOMM 

workshop on Internet measurement, November 06-08 2002, pp. 137-150. 
[253] DirectConnect, http:www.neo-modus.com (2001) 
[254] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy, An analysis of Internet content delivery systems, 

ACM SIGOPS Operating Systems Review 36 (2002) 315-327. 
[255] A. Loo, The Future or Peer-to-Peer Computing, Communications of the ACM 46 (9) (2003) 56-61. 
[256] B. Yang and H. Garcia-Molina, Comparing Hybrid Peer-to-Peer Systems (extended), 27th Int'l Conf. on Very 

Large Data Bases, September 11-14 2001. 
[257] D. Scholl, OpenNap Home Page, http://opennap.sourceforge.net/ (2001) 
[258] S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google file system, Proc. 19th ACM symposium on 

operating systems principles 2003, pp. 29-43. 
[259] I. Clarke, S. Miller, T. Hong, O. Sandberg, and B. Wiley, Protecting Free Expression Online with Freenet, 

IEEE Internet Computing 6 (1) (2002) 
[260] J. Mache, M. Gilbert, J. Guchereau, J. Lesh, F. Ramli, and M. Wilkinson, Request algorithms in Freenet-style 

peer-to-peer systems, Proc. Second IEEE Int'l Conf. on Peer to Peer Computing P2P'02, September 5-7 2002. 
[261] C. Rohrs, Query Routing for the Gnutella Networks, 

http://www.limewire.com/developer/query_routing/keyword%20routing.htm Version 1.0 (2002) 
[262] I. Clarke, Freenet's Next Generation Routing Protocol, http://freenetproject.org/index.php?page=ngrouting,

20th July 2003. 
[263] A. Z. Kronfol, FASD: A fault-tolerant, adaptive scalable distributed search engine, Master's Thesis 

http://www.cs.princeton.edu/~akronfol/fasd/ 2002. 
[264] S. Gribble, E. Brewer, J. M. Hellerstein, and D. Culler, Scalable, Distributed Data Structures for Internet 

Service Construction, Proc. 4th Symp. on Operating Systems Design and Implementation OSDI 2000, 
October 2000. 

[265] K. Aberer, Efficient Search in Unbalanced, Randomized Peer-to-Peer Search Trees, EPFL Technical Report 
IC/2002/79 (2002) 

[266] R. Honicky and E. Miller, A fast algorithm for online placement and reorganization of replicated data, Proc. 
17th Int'l Parallel and Distributed Processing Symp., April 2003. 

[267] G. S. Manku, Routing networks for distributed hash tables, Proc. 22nd annual ACM Symp. on Principles of 
Distributed Computing, PODC 2003, July 13-16 2003, pp. 133-142. 

[268] S. Lei and A. Grama, Extended consistent hashing: a framework for distributed servers, Proc. 24th Int'l Conf. 
on Distributed Computing Systems ICDCS 2004, March 23-26 2004. 



J. Risson and T.Moors                  51 

[269] W. Litwin, Re: Chord & LH*, Email to Ion Stoica, March 23 2004a. 
[270] J. Li, J. Stribling, R. Morris, F. Kaashoek, and T. Gil, A performance vs. cost framework for evaluating DHT 

design tradeoffs under churn, Proc. IEEE Infocom, Mar 13-17 2005. 
[271] S. Zhuang, D. Geels, I. Stoica, and R. Katz, On failure detection algorithms in overlay networks, Proc. IEEE 

Infocomm, Mar 13-17 2005. 
[272] X. Li, J. Misra, and C. G. Plaxton, Active and Concurrent Topology Maintenance, The 18th Annual Conf. on 

Distributed Computing (DISC 2004), Trippenhuis, Amsterdam, the Netherlands, October 4 - October 7 (2004) 
[273] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, M. Hauswirth, and S. Haridi, The essence of P2P: a 

reference architecture for overlay networks, Proc. of the 5th international conference on peer-to-peer 
computing, Aug 31-Sep 2 2005. 

[274] C. Tang, M. Buco, R. Chang, S. Dwarkadas, L. Luan, E. So, and C. Ward, Low traffic overlay networks with 
large routing tables, Proc. of the 2005 ACM Sigmetrics international conf. on Measurement and modeling of 
computer systems, Jun 6-10 2005, pp. 14-25. 

[275] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, Handling churn in a DHT, Proc. of the USENIX Annual 
Technical Conference, June 2004. 

[276] C. Blake and R. Rodrigues, High Availability, Scalable Storage, Dynamic Peer Networks:  Pick Two, 9th 
Workshop on Hot Topics in Operating Systems (HotOS), Lihue, Hawaii, 18-21 May (2003) 

[277] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu, OpenDHT: a 
public DHT service and its uses, Proc. of the conf. on Applications, technologies, architectures and protocols 
for computer communications, Aug 22-26 2005, pp. 73-84. 

[278] T. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling, p2psim, a simulator for peer-to-peer protocols, 
http://www.pdos.lcs.mit.edu/p2psim/ (2003) 

[279] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao, Distributed object location in a dynamic network, 
Theory of Computing Systems (2004) 

[280] N. Lynch, D. Malkhi, and D. Ratajczak, Atomic data access in distributed hash tables, Proc. Int'l Peer-to-Peer 
Symp., March 7-8 2002. 

[281] S. Gilbert, N. Lynch, and A. Shvartsman, RAMBO II: Rapidly Reconfigurable Atomic Memory for Dynamic 
Networks, Technical Report, MIT-CSAIL-TR-890 2004. 

[282] N. Lynch and I. Stoica, MultiChord: A resilient namespace management algorithm, Technical Memo MIT-
LCS-TR-936 2004. 

[283] J. Risson, K. Robinson, and T. Moors, Fault tolerant active rings for structured peer-to-peer overlays, Proc. of 
the 30th Annual IEEE Conf. on Local Computer Networks, Nov 15-17 2005, pp. 18-25. 

[284] B. Awerbuch and C. Scheideler, Peer-to-peer systems for prefix search, Proc. 22nd annual ACM Symp. on 
Principles of Distributed Computing 2003, pp. 123-132. 

[285] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, Towards a common API for structured P2P 
overlays, Proc. Second Int'l Workshop on Peer to Peer Systems IPTPS 2003, February 2003. 

[286] N. Feamster and H. Balakrishnan, Towards a logic for wide-area Internet routing, Proc. ACM SIGCOMM 
workshop on Future Directions in Network Architecture, August 25-27 2003, pp. 289-300. 

[287] B. Ahlgren, M. Brunner, L. Eggert, R. Hancock, and S. Schmid, Invariants: a new design methodology for 
network architectures, Proc. ACM SIGCOMM workshop on Future Direction in Network Architecture, 
August 30 2004, pp. 65-70. 

[288] R. Mahajan, M. Castro, and A. Rowstron, Controlling the cost of reliability in peer-to-peer overlays, Second 
Int'l Workshop on Peer-to-Peer Systems IPTPS'03, February 20-21 2003. 

[289] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, Handling churn in a DHT, Report No. UCB/CSD-03-1299, 
University of California, also Proc. USENIX Annual Technical Conference, June 2003. 

[290] M. Castro, M. Costa, and A. Rowstron, Performance and dependability of structured peer-to-peer overlays, 
Microsoft Research Technical Report MSR-TR-2003-94, December. Also 2004 Int'l Conf. on Dependable 
Systems and Networks, June 28-July 1 2003. 

[291] D. Liben-Nowell, H. Balakrishnan, and D. Karger, Analysis of the evolution of peer-to-peer systems, Annual 
ACM Symp. on Principles of Distributed Computing 2002, pp. 233-242. 

[292] L. Alima, S. El-Ansary, P. Brand, and S. Haridi, DKS(N,k,f): a family of low communication, scalable and 
fault-tolerant infrastructures for P2P applications, Proc. 3rd IEEE/ACM Int'l Symp. on Cluster Computing and 
the Grid (2003) 344-350. 

[293] D. Karger and M. Ruhl, Finding nearest neighbours in growth-restricted metrics, Proc. 34th annual ACM 
symposium on Theory of computing 2002, pp. 741-750. 

[294] S. Ratnasamy, A Scalable Content-Addressable Network, Doctoral Dissertation 2002. 
[295] S. McCanne and S. Floyd, The LBNL/UCB Network Simulator. 
[296] I. Abraham, D. Malkhi, and O. Dubzinski, LAND:Stretch (1+epsilon) Locality Aware Networks for DHTs, 

Proc. ACM-SIAM Symp. on Discrete Algorithms SODA-04 2004. 



52                J. Risson and T. Moors

[297] M. Naor and U. Wieder, Novel architectures for P2P applications:  the continuous-discrete approach, Proc. 
fifteenth annual ACM Symp. on Parallel Algorithms and Architectures, SPAA 2003, June 7-9 2003, pp. 50-
59. 

[298] N. D. de Bruijn, A combinatorial problem, Koninklijke Netherlands: Academe Van Wetenschappen 49 (1946) 
758-764. 

[299] J.-W. Mao, The Coloring and Routing Problems on de Bruijn Interconnection Networks, Doctoral 
Dissertation, July 18 2003. 

[300] M. L. Schlumberger, De Bruijn communication networks, Doctoral Dissertation 1974. 
[301] M. Imase and M. Itoh, Design to minimized diameter on build-block network, IEEE Trans. on Computers C-

30 (6) (1981) 439-442. 
[302] S. M. Reddy, D. K. Pradhan, and J. G. Kuhl, Direct graphs with minimal and maximal connectivity, Technical 

Report, School of Engineering, Oakland University (1980) 
[303] R. A. Rowley and B. Bose, Fault-tolerant ring embedding in de Bruijn networks, IEEE Trans. on Computers 

42 (12) (1993) 1480-1486. 
[304] K. Y. Lee, G. Liu, and H. F. Jordan, Hierarchical networks for optical communications, Journal of Parallel 

and Distributed Computing 60 (2000) 1-16. 
[305] M. Naor and U. Wieder, Know thy neighbor's neighbor:  better routing for skip-graphs and small worlds, The 

3rd Int'l Workshop on Peer-to-Peer Systems, February 26-27 2004. 
[306] P. Fraigniaud and P. Gauron, The content-addressable networks D2B, Technical Report 1349, Laboratoire de 

Recherche en Informatique, January 2003. 
[307] A. Datta, S. Girdzijauskas, and K. Aberer, On de Bruijn routing in distributed hash tables: there and back 

again, Proc. Fourth IEEE Int'l Conf. on Peer-to-Peer Computing, , 25-27 August 2004. 
[308] W. Pugh, Skip lists: a probabilistic alternative to balanced trees, Proc. Workshop on Algorithms and Data 

Structures, August 17-19 1989, pp. 437-449. 
[309] W. Pugh, Skip lists: a probabilistic alternative to balanced trees, Communications of the ACM 33 (6) (1990) 

668-676. 
[310] J. Gray, The transaction concept: Virtues and limitations, Proc.  VLDB, September 1981. 
[311] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I. Stoica, Enhancing P2P file-sharing with internet-

scale query processor, Proc. 30th Int'l Conf. on Very Large Data Bases VLDB 2004, 29 August-3 September 
2004. 

[312] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu, Mariposa: a wide-
area distributed database system, THE VLDB Journal - The Int'l Journal of Very Large Data Bases (5) (1996) 
48-63. 

[313] V. Cholvi, P. Felber, and E. Biersack, Efficient Search in Unstructured Peer-to-Peer Networks, Proc. Symp. 
on Parallel Algorithms and Architectures, July 2004. 

[314] S. Daswani and A. Fisk, Gnutella UDP Extension for Scalable Searches (GUESS) v0.1, 
http://www.limewire.org/fisheye/viewrep/~raw,r=1.2/limecvs/core/guess_01.html (2002) 

[315] A. Fisk, Gnutella Dynamic Query Protocol v0.1, Gnutella Developer Forum (2003) 
[316] O. Gnawali, A Keyword Set Search System for Peer-to-Peer Networks, Master's Thesis 2002. 
[317] Limewire, Limewire Host Count, http://www.limewire.com/english/content/netsize.shtml (2004) 
[318] A. Fisk, Gnutella Ultrapeer Query Routing, 

http://groups.yahoo.com/group/the_gdf/files/Proposals/Working%20Proposals/search/Ultrapeer%20QRP/
v0.1 (2003) 

[319] A. Fisk, Gnutella Dynamic Query Protocol, 
http://groups.yahoo.com/group/the_gdf/files/Proposals/Working%20Proposals/search/Dynamic%20Querying/
v0.1 (2003) 

[320] S. Thadani, Meta Data searches on the Gnutella Network (addendum), 
http://www.limewire.com/developer/MetaProposal2.htm (2001) 

[321] S. Thadani, Meta Information Searches on the Gnutella Networks, 
http://www.limewire.com/developer/metainfo_searches.html (2001) 

[322] P. Reynolds and A. Vahdat, Efficient peer-to-peer keyword searching, ACM/IFP/USENIX Int'l Middleware 
Conference, Middleware 2003, June 16-20 2003. 

[323] W. Terpstra, S. Behnel, L. Fiege, J. Kangasharju, and A. Buchmann, Bit Zipper Rendezvous, optimal data 
placement for general P2P queries, Proc. First Int'l Workshop on Peer-to-Peer Computing and Databases, 
March 14 2004. 

[324] A. Singhal, Modern Information Retrieval: A Brief Overview, IEEE Data Engineering Bulletin 24 (4) (2001) 
35-43. 

[325] E. Cohen, A. Fiat, and H. Kaplan, Associative Search in Peer to Peer Networks: Harnessing Latent Semantics, 
IEEE Infocom 2003, The 22nd Annual Joint Conf. of the IEEE Computer and Communications Societies, 
March 30-April 3 2003. 



J. Risson and T.Moors                  53 

[326] W. Muller and A. Henrich, Fast retrieval of high-dimensional feature vectors in P2P  networks using compact 
peer data summaries, Proc. 5th ACM SIGMM international workshop on Multimedia Information Retrieval, 
November 7 2003, pp. 79-86. 

[327] M. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems, 2nd edition ed. Prentice Hall, 1999. 
[328] G. Salton, A. Wong, and C. S. Yang, A vector space model for automatic indexing, Communications of the 

ACM 18 (11) (1975) 613-620. 
[329] S. E. Robertson, S. Walker, and M. Beaulieu, Okapi at TREC-7: automatic ad hoc, filtering, VLC and filtering 

tracks, Proc. Seventh Text REtrieval Conference, TREC-7, NIST Special Publication 500-242, July 1999, pp. 
253-264. 

[330] A. Singhal, J. Choi, D. Hindle, D. Lewis, and F. Pereira, AT&T at TREC-7, Proc. Seventh Text REtrieval 
Conf. TREC-7, July 1999, pp. 253-264. 

[331] K. Sankaralingam, S. Sethumadhavan, and J. Browne, Distributed Pagerank for P2P Systems, Proc. 12th 
international symposium on High Performance Distributed Computing HPDC, June 22-24 2003. 

[332] I. Klampanos and J. Jose, An architecture for information retrieval over semi-collaborated peer-to-peer 
networks, Proc. 2004 ACM symposium on applied computing 2004, pp. 1078-1083. 

[333] C. Tang, Z. Xu, and S. Dwarkadas, Peer-to-peer information retrieval using self-organizing semantic overlay 
networks, Proc. 2003 conference on Applications, Technologies, Architectures and Protocols for Computer 
Communications, August 25-29 2003, pp. 175-186. 

[334] C. Tang and S. Dwarkadas, Hybrid global-local indexing for efficient peer-to-peer information retrieval, Proc. 
First Symp. on Networked Systems Design and Implementation NSDI'04, March 29-31 2004, pp. 211-224. 

[335] G. W. Furnas, S. Deerwester, S. T. Dumais, T. K. Landauer, R. A. Harshman, L. A. Streeter, and K. E. 
Lochbaum, Information retrieval using a singular value decomposition model of latent semantic structure, 
Proc. 11th Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval 1988, pp. 
465-480. 

[336] C. Tang, S. Dwarkadas, and Z. Xu, On scaling latent semantic indexing for large peer-to-peer systems, The 
27th Annual Int'l ACM SIGIR Conf. SIGIR'04, ACM Special Interest Group on Information Retrieval, July 
2004. 

[337] W. Litwin and S. Sahri, Implementing SD-SQL Server: a Scalable Distributed Database System, CERIA 
Research Rerpot 2004-04-02, April 2004. 

[338] M. Jarke and J. Koch, Query Optimization in Database Systems, ACM Computing Surveys 16 (2) (1984) 111-
152. 

[339] G. S. Manku, M. Bawa, and P. Raghavan, Symphony:  Distributed Hashing in a Small World, Proc. 4th 
USENIX Symp. on Internet Technologies and Systems, March 26-28 2003. 

[340] J. L. Bentley, Multidimensional binary search trees used for associative searching, Communications of the 
ACM 18 (9) (1975) 509-517. 

[341] B. Chun, I. Stoica, J. Hellerstein, R. Huebsch, S. Jeffery, B. T. Loo, S. Mardanbeigi, T. Roscoe, S. Rhea, and 
S. Schenker, Querying at Internet Scale, Proc. 2004 ACM SIGMOD international conference on management 
of data, demonstration session 2004, pp. 935-936. 

[342] P. Cao and Z. Wang, Efficient top-K query calculation in distributed networks, Proc. 23rd Annual ACM 
SIGACT-SIGOPS Symp. on Principles of Distributed Computing PODC 2004, July 25-28 2004, pp. 206-215. 

[343] D. Psaltoulis, I. Kostoulas, I. Gupta, K. Birman, and A. Demers, Practical algorithms for size estimation in 
large and dynamic groups, Proc. Twenty-Third Annual ACM SIGACT-SIGOPS Symp. on Principles of 
Distributed Computing, PODC 2004, July 25-28 2004. 

[344] R. van Renesse, The importance of aggregation, Springer-Verlag Lecture Notes in Computer Science  "Future 
Directions in Distributed Computing".  A. Schiper, A. A. Shvartsman, H. Weatherspoon, and B. Y. Zhao, 
editors. Springer-Verlag, Heidelberg volume 2584 (2003) 



Taxonomy Selected 
References 

Search [18, 21-29] 
Semantic-Free Indexes 

Plaxton Trees 
Rings 
Tori 
Butterflies 
de Bruijn Graphs 
Skip Graphs 

[2, 6, 7, 30-52] 

Semantic Indexes 
Keyword Lookup 
Peer Information Retrieval 
Peer Data Management 

[4, 53-71]  

Search 
Range Queries 
Multi-Attribute Queries 
Join Queries 
Aggregation Queries 
Continuous Queries 
Recursive Queries 
Adaptive Queries 

[20, 22, 23, 25, 
32, 38, 41, 56, 72-
100] 

Storage 
Consistency & Replication 

Eventual consistency 
Trade-offs… 

[101-112] 

Distribution
Epidemics, Bloom Filters

[39, 42, 90, 92, 
113-131] 

Fault Tolerance
Erasure Coding 
Byzantine Agreement … 

[40, 105, 132-
139] 

Locality [24, 43, 47, 140-
160] 

Load Balancing [37, 86, 100, 107, 
151, 161-171] 

Security 
Character 

Identity 
Reputation and Trust 
Incentives 

[172-182] 

Goals 
Availability 
Authenticity 
Anonymity 
Access Control 
Fair Trading

[25, 27, 71, 183-
197] 

Applications [1, 198-200] 
Memory 

File Systems 
Web 
Content Delivery Networks 
Directories 
Service Discovery 
Publish / Subscribe .. 

[32, 90, 142, 201-
222] 

Intelligence 
GRID 
Security… 

[223-228] 

Figure 1 Classification of P2P Research Literature 
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CATEGORY OPTIONS 
NORMAL UPDATES
 Joins Passive; active [272] 
 Leaves Passive; active [272] 
FAULT DETECTION  [271] 
 Maintenance Proactive (periodic or keep-alive probes); 

reactive (correction-on-use, correction-on-
failure) [273] 

 Report Negative (all dead nodes, nodes recently 
failed); Positive (all live nodes; nodes 
recently recovered); [271] 

TOPOLOGY SHARING  Yes; no (e.g., when a node detects a failed 
node, does it tell other nodes?) [271] 

 Multicast Tree (explicit, implicit) [247, 274] 
 Gossip Gossip timeouts; Number of contacts [39] 
CORRECTIVE  ACTION
 Routing Rerouting actions (reroute once; route in 

parallel [270]; reject); Routing timeouts 
(TCP-style, virtual coordinates) [275] 

 Topology Update action (evict/ replace/ tag node); 
update timeliness (immediate, periodic[275], 
delayed [276]) 

Figure 2 Topology Maintenance in Distributed Hash Tables 
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QUERY DESCRIPTION 
QUERY ROUTING
 Flooding  Peers only index local files so queries must propagate widely [4] 
 Policy-based Choice of the next hop node: random; most/least recently used; most files shared; 

most results [245, 313] 
 Random walks Parallel [67] or biased random walks [61, 66] 
QUERY FORWARDING
 Iterative Nodes perform iterative unicast searches of ultrapeers, until the desired number of 

results is achieved. See Gnutella UDP Extension for Scalable Searches (GUESS) 
[245, 314] 

 Recursive 
QUERY FLOW CONTROL
 Receiver-controlled Receivers grant query tokens to senders, so as to avoid overload [61] 
 Reactive Sender throttles queries when it notices receivers are discarding packets [61, 66] 
 Dynamic Time To Live In the Dynamic Query Protocol, the sender adjusts the time-to-live on each iteration 

based on the number of results received, the number of connections left, and the 
number of nodes already theoretically reached by the search [315] 

INDEX DESCRIPTION 
DISTRIBUTION
 Compression Leaf nodes periodically send ultrapeers compressed query routing tables, as in the 

Query Routing Protocol [240] 
 One hop replication Nodes maintain an index of content on their nearest neighbors [61, 313] 
PARTITIONING
 By document [210] 
 By keyword Use an inverted list to find a matching document, either locally or at another peer 

[21]. Partition by keyword sets [316] 
 By document and keyword Also known as Multi-Level Partitioning [21] 
METRIC DESCRIPTION 
Query load Queries per second per node/link [65, 245] 
Degree (distribution) The number of links per node [66, 313]. Early P2P networks approximated power-law 

networks, where the number of nodes with L links is proportional to L-k  where k is a 
constant [65] 

Query delay Reported in terms of time and hop count [61, 66] 
Query success rate The “Collapse Point” is the per-node query rate at which the query success rate drops 

below 90% [61]. See also [61, 245, 313]. 

Figure 3  Keyword Lookup in P2P Systems 
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Technique 
(Underlying DHT 1)

Reference 

Peer-to-Peer (P2P) 
Locality Sensitive Hashing 
(Chord)

[77] 

Prefix Hash Trees 
(unspecified DHT)

[78, 79] 

Space Filling Curves 
(CAN)

[80] 

Space Filling Curves 
(Chord)

[81] 

Quadtrees 
(Chord)

[82] 

Skip Graphs [38, 41, 83, 
100] 

Mercury [84] 
P-Grid [85, 86] 

Scalable Distributed Data Structures 
(SDDS) 

RP* [87, 88] 
Note 1. Although several of the authors based their work on one particular DHT, it may be possible to port their work to others.

Figure 4 Solutions for Range Queries on P2P and SDDS indexes. 
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CLASSIFICATION OPTIONS 
Tree type Doesn’t use DHT [92], use internal DHT 

trees [95], use independent trees on top of 
DHTs 

Tree repair Periodic [93], exceptional [32] 
Tree count One per key, one per overlay [56] 
Tree flexibility Static [92], dynamic 
Query interface Install, update, probe [98] 
Query distribution Multicast [98], gossip [92] 
Query applications Leader election, voting, resource 

location, object placement and error 
recovery [98, 344] 

Query semantics  
 Consistency Best-effort, eventual [92], snapshot / 

interval / single-site validity [99] 
 Timeliness [344] 
 Lifetime Continuous [97, 99], single-shot 

 No. attributes Single, multiple 
Query types Count, sum, maximum, minimum, 

average, median, top k [92, 342, 343] 

Figure 5 Aggregation Trees and Queries in P2P Networks 
Key: Astrolabe [92]; Cone [93]; Distributed Approximative System Information Service (DASIS) [95]; Scalable Distributed 
Information Management System (SDIMS) [98]; Self-Organized Metadata Overlay (SOMO) [56]; Wildfire [99]; Willow [32]; 
Newscast [97] 

Figure 5
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