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Mobile IPv6 and NEMO BS are IETF standard mobility protocols for IPv6. It is said that freely available

implementations play a big role in the deployment of new protocols. To accelerate the deployment of IPv6

mobility, we implemented the different mobility protocol stacks for the BSD operating systems. During

the development, we made two different implementations based on this different design policies. The first

one was an in-kernel implementation and the other a user space implementation. The former design makes

it easy to use kernel information necessary for mobility operation, but it is difficult to implement and to

extend features than the latter. The latter design needs to have extra mechanisms to retrieve or inject kernel

information from user space, but in most cases developing user space programs is easier than developing in

the kernel. In this paper, we discuss the design policies and implementation details of these two stacks.

1 Introduction

The rapid growth of the IPv4 Internet raised con-

cerns of the exhaustion of the IPv4 address space.

IPv6 was designed as the essential solution to this

problem. We are now in the transition period from

an IPv4 Internet to an IPv6 Internet. As a result

of the transition, a vast number of IPv6 devices

connected to the Internet using various communi-

cation technologies will appear in the future. The

devices will not only be computers and PDAs but

also cars, mobile phones, sensor devices and so on.

Since many devices will potentially move around

changing their point of attachment to the Internet,

mobility support for IPv6 is considered necessary.

The IETF has discussed the protocol specification

and finally standardized two IPv6 mobility proto-

cols, Mobile IPv6 [7] for host mobility and Network

Mobility Basic Support (NEMO BS) [2] for network
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mobility.

When deploying a new protocol, it is often ef-

ficient to provide the protocol stack as an open

source software. The developers of the protocol

stack can get feedback from users worldwide and

can thereby enhance their implementation. For ex-

ample, the IPv6 protocol stack developed by the

KAME project [24] accelerated the implementation

of IPv6 in various operating systems. We intended

to do the same thing for the mobility protocols. We

implemented the IPv6 mobility stacks: the KAME

Mobile IPv6 stack and the SHISA [25] [17] mobility

stack. In this paper, we will discuss the design and

implementation details of these two models.

2 Overview of Mobile IPv6 and

NEMO BS

Mobile IPv6 is a protocol which adds a mobility

function to IPv6. In Mobile IPv6, a moving node

(Mobile Node, MN ) has a Home Address (HoA)

which is its permanently fixed address. The HoA

is assigned to the MN by the network to which the

MN is originally attached. This network is called

the Home Network, all other networks are referred

as Foreign Networks. When the MN moves to other

networks, the MN sends a message to bind its HoA

and the address assigned at the foreign network,
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Fig. 1 Basic Operation of Mobile IPv6.

Care-of Address (CoA). The message is called a

Binding Update (BU ) message. This message is

sent to a special node, the Home Agent (HA), which

is located in the home network. The HA replies

to the MN with a Binding Acknowledgement (BA)

message to confirm the request. A bi-directional

tunnel between the HA and the CoA of the MN is

established after the binding information has been

successfully exchanged. All packets sent to the

HoA of the MN are routed to the home network

by the standard Internet routing mechanism. The

HA intercepts the packets and forwards them to the

MN using the tunnel. The MN also sends packets

using the tunnel when communicating with other

nodes. The communicating nodes, Correspondent

Nodes (CN ), do not need to know the actual lo-

cation of the MN, since they communicate to the

MN through its home network attachment. Fig. 1

illustrates the operation of Mobile IPv6.

In Fig. 1, the communication path between the

MN and its peer node is redundant since all traffic

is forwarded via the HA. Mobile IPv6 provides an

optimized way to communicate with an IPv6 node

which is aware of the Mobile IPv6 protocol. An

MN can send a BU message to a CN. When send-

ing the BU message, the MN must perform a simple

address ownership verification procedure, the Re-

turn Routability (RR) procedure. The MN sends

two messages, Home Test Init (HoTI ) and Care-of

Test Init (CoTI ) messages, to the CN, one from its

HoA and the other from its CoA. The CN replies

to these two messages by generating two separate

cookies and send them in a Home Test (HoT ) and
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Fig. 2 Basic Operation of NEMO BS.

Care-of Test (CoT ) messages. The MN then gen-

erates a secret key using these two cookies received

via the different paths and sends a BU message

cryptographically protected by the secret key. Once

the CN accepts the BU message, the MN can start

sending packets to the CN from its CoA. To pro-

vide the HoA information to the CN, the MN stores

its HoA in a Destination Options Header as the

Home Address option (HAO). The option is newly

defined in the Mobile IPv6 specification. The CN

can also send a packet directly to the MN using

the Type 2 Routing Header (RTHDR2 ), a newly

defined routing header type. This direct communi-

cation is called Route Optimized (RO) communica-

tion.

NEMO BS is an extension of Mobile IPv6. The

basic operation of a moving router, Mobile Router

(MR), is same as that of an MN except the MR

has a network (Mobile Network) behind it. The

network prefix is called a Mobile Network Prefix

(MNP). A node in the mobile network, Mobile Net-

work Node (MNN ), can communicate with the rest

of the Internet as if it were attached to its home

network, thanks to the tunneling between the HA

and the MR. NEMO BS does not provide the RO

feature. Fig. 2 depicts the operation of NEMO BS.

3 KAME Mobile IPv6

The development of the KAME Mobile IPv6

stack started around June 2001 as a part of the

KAME project activity. At that time, the KAME

IPv6 stack [6] already had a Mobile IPv6 proto-
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Table1 ICMPv6 messages handling.

ICMPv6 message type Sent from Processed by

Dynamic Home Agent

Address Discovery Re-

quest

kernel user space

Dynamic Home Agent

Address Discovery Re-

ply

user space kernel

Mobile Prefix Solicita-

tion

kernel user space

Mobile Prefix Adver-

tisement

user space kernel

Router Advertisement user space kernel

col stack contributed by Ericsson, however no one

in the KAME project was maintaining the con-

tributed code. To keep the code up-to-date to the

specification and keep enhancing the quality of the

code, we decided to have our own Mobile IPv6 stack

on top of the KAME IPv6 stack. This code was de-

veloped and maintained until April 2004 when we

started the development of the new mobility code

discussed in Section 4.

3. 1 KAME Mobile IPv6 Design

When designing the KAME Mobile IPv6, we de-

fined the goals of the stack as follows:

• Providing a simple configuration architecture

to use Mobile IPv6.

• Node type based coding to reduce the object

size.

The KAME Mobile IPv6 was designed as a part

of the kernel, whose design is the same as Erics-

son’s code used before the KAME Mobile IPv6. All

types of the Mobility Header, newly defined IPv6

extension header for carrying mobility related sig-

naling messages, are processed in the kernel. The

exceptions was the handling of a few ICMPv6 mes-

sages extended in RFC 3775. In the KAME IPv6

protocol design, the ICMPv6 messages are handled

both in the kernel space and user space (e.g. the

ICMPv6 Echo Request message is sent from the

ping6 program, user space, and the ICMPv6 Echo

Reply message is handled in the kernel). The Raw

socket mechanism provides the user space programs

access to ICMPv6 messages. We utilized this mech-

anism to reduce kernel code size. Table 1 shows the

ICMPv6 messages related to Mobile IPv6 that are

handled in user space.

The reason we implemented the stack in the ker-

nel was that the specification of the Mobile IPv6,

when we started implementing it, was using the

Destination Options Header for mobility signaling

messages. The Destination Options Header is one

of the IPv6 extension headers and the basic pro-

cessing code had already been implemented in the

kernel as a part of the KAME IPv6 stack. Imple-

menting the Mobile IPv6 stack in the kernel extend-

ing the Destination Options Header processing code

was natural choice at that time. The IETF Mo-

bile IP Working Group later changed the message

container from the Destination Options Header to

the Mobility Header which can be handled in user

space. We could have switched the stack from a ker-

nel implementation to a user space implementation,

however this change was delayed until we started

designing the SHISA stack. Since the change would

have required an entire stack re-designing, possibly

causing quality problems, we continued the kernel

implementation to keep the code stable.

The main problem with implementing all func-

tions in the kernel is that it increases kernel size.

In fact, since most users are not going to use the

mobility function, providing it in the kernel is a

waste of the code space for these users. This code

bloat can be somewhat addressed by the decision

to have the KAME Mobile IPv6 code designed as

a supplemental function to the existing IPv6 code

and our goal to not modify the existing kernel code

as much as possible. The code is also divided into

several parts based on the type of the node defined

in the Mobile IPv6 specification (MN, CN and HA)

and users of the stack can easily drop unnecessary

code, based on their usage requirements. This de-

sign will help to reduce the total size of the code,

when code size is considered a important problem,

e.g. for embedded platforms.

3. 2 KAME Mobile IPv6 Implementation

Fig. 3 shows the module relationship of the

KAME Mobile IPv6. In this design, the kernel has

most of the Mobile IPv6 processing modules. The

had and rtadvd are the only user space programs

that handle ICMPv6 messages shown in Table 1.

The ICMPv6 messages are exchanged between user

space and kernel space using ICMPv6 sockets.

The Neighbor Discovery module is modified to

notify the Movement Detection and Prefix Manage-
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Fig. 3 The module layout of the KAME Mobile IPv6. The dotted boxes are modules that exist in

the base KAME IPv6 protocol stack. The shaded boxes are modules that did not require any

modification to support Mobile IPv6. The boxes with solid lines are newly introduced modules for

Mobile IPv6.

ment modules of received prefix information. The

Movement Detection module detects MN’s move-

ment by the current prefix information and its cur-

rently assigned address status. The Prefix Manage-

ment module keeps prefix information for the MN’s

home network and foreign networks. The Address

Management module is extended to support HoAs,

the permanent addresses used by an MN.

The Return Routability module processes signal-

ing messages for the RO communication and puts

binding information into the Binding Management

module. The Binding Management module keeps

the binding information between the HoA and CoA

of the MN. The module manages a Binding Update

List database (in an MN) and/or a Binding Cache

database (in an HA/CN). The Forwarding module

and the Tunneling module look up these databases

when sending or receiving packets, and process ev-

ery packets based on the binding information.

The Destination Options Header module pro-

cesses the HAO options of the incoming packets. If

the HoA included in the incoming HAO is invalid,

the packet must be dropped. The Routing Header

module processes the Type 2 Routing Header intro-

duced by Mobile IPv6.
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3. 3 KAME Mobile IPv6 Problems

We found several problems in the KAME Mobile

IPv6 stack. The first problem is its extensibility.

Since almost all of the code is implemented as ker-

nel functions, they highly depend on the internal

design of the kernel, this makes it hard to extend

some specific parts of the module.

The second problem is the number of third party

developers. The number of the kernel developers

is relatively smaller than that of user space appli-

cation developers. As a result, the total amount

of feedback of the code might be smaller than it

should be.

Third, because the code is tightly integrated to

the kernel, it is difficult to replace some parts of the

mobility function. For example, movement detec-

tion may require code to handle specific events of

the environment of the operation scenarios of mo-

bile service carriers. However, if we want to do

it with KAME Mobile IPv6 implementation, we

would need to modify the kernel code related to

movement detection code.

Lastly, the fact that the KAME Mobile IPv6

needed large modification in the kernel is also a

problem when we consider integration of the code

into the original BSD distributions. For example,

we implemented the RR procedure in the kernel.

The RR procedure requires several messages be

exchanged and timeout/retry management. This

introduces complex state management and timer

handling on a per message basis in the kernel, which

should be avoided as much as possible. For these

reasons, we decided to redesign the entire stack

from scratch.

4 SHISA

The development of the SHISA mobility stack

started in April 2004 to overcome the problems

found in the KAME Mobile IPv6 stack. The latest

SHISA stack supports NEMO BS, Multiple Care-

of Address Registration [23] and Dual Stack support

[12] [19] in addition to Mobile IPv6.

4. 1 SHISA Design

SHISA is designed to achieve the following goals.

• Separation of signaling processing layer and

forwarding processing layer:

The operation of Mobile IPv6 and NEMO BS

is basically IP packet routing (forwarding or

tunneling). To get better performance, packet

processing of normal traffic should be done in

kernel space, while the signal processing should

be done in user space, since the signal process-

ing is complex and it is easier to modify/update

user space programs than the kernel. This sep-

aration will give the stack both good perfor-

mance and increased efficiency in stack devel-

opment.

• Adaptability to various movement scenarios:

The mechanism required for movement detec-

tion and performance varies based on the de-

mands of operators. The signaling mechanism

and movement detection mechanism must be

independent, because the signaling procedure

usually never changes unless the protocol spec-

ification changes. Movement detection code

must be replaceable in response to operator’s

requirements.

• Extensibility:

IPv6 mobility technologies are one of most ac-

tive area in Internet research. The design of

the stack must provide an easy framework to

support several future functions yet undefined.

• Minimum modification on existing kernel

functions:

We believe the mobility function will be a core

function in future operating systems. To inte-

grate the implementation to the target oper-

ating system (in our case, the BSD operating

systems), we have to minimize the modification

for existing kernel functions.

In the following sections, we will discuss the im-

plementation decisions we have made based on the

above requirements.

4. 2 SHISA Implementation

SHISA is implemented on top of the KAME IPv6

stack [6]. The fact that the KAME IPv6 stack cov-

ered most of the IPv6 functions and API functions

made it easier for us to implement the mobility

stack on it. What we had to implement was the

mobility related functions only, and there was no

need to implement other IPv6 core functions.

4. 3 Supported Features

Our SHISA implementation provides the follow-

ing functions:

• Mobile IPv6 functions for MN, HA and CN
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Table2 SHISA programs.

Program Description

mnd Provides the MN functions

had Provides the HA functions

cnd Provides the CN functions

babymdd A simple movement detector of MN

mrd Provides the MR functions

nemonetd Provides the tunnel setup functions

for NEMO BS

Table3 SHISA programs categorized by the

node types.

Node type Used programs

Mobile node mnd, babymdd, cnd

Mobile router mrd, nemonetd, babymdd

Home agent had, cnd

Correspondent node cnd

• NEMO BS functions for MR and HA

• Multiple Care-of Address Registration sup-

port [23]

• IPv4 Mobile Network Prefix support [12]

4. 4 Program Organization

SHISA consists of several user space programs

and the modified kernel. Table 2 shows the pro-

grams used by the SHISA stack and Table 3 lists

the necessary program modules used by each node

type.

Based on the node type, one or more SHISA pro-

grams can run on a node. In addition, a user can

choose to drop or replace functions by stopping or

changing the relevant programs. For example, if

one does not need the CN functions when operat-

ing an MN, he can stop the cnd program to save

CPU resources or storage footprint. One can also

replace the babymdd program to another move-

ment detection program which may be specialized

to the user’s network and optimized to the devices

used in his network environment.

Fig. 4 shows the system configuration of the

SHISA stack. On top of the stack there are 6 pro-

grams as listed in Table 2. The mnd program and

the mrd program manage signaling processing of

the MN and MR side respectively. The mnd pro-

gram processes the RR procedure signaling mes-

sages for the RO communication. The mrd handles

the NEMO BS extension in addition to the Mobile

IPv6 signaling with the program nemonetd. The

binding information held on the moving node side

are stored in the Binding Update database and are

managed by the mnd or mrd program.

The babymdd program is a simple movement

detection program. The movement detection algo-

rithm is discussed in Section 4. 6.

The cnd program manages the signaling process-

ing for the RR procedure on the CN side. The de-

tailed state management of the binding information

exchange will be discussed in Section 4. 7.

The had program manages the signaling process-

ing on the HA side. If the HA serves MRs in addi-

tion to MNs, it also processes NEMO BS signaling

messages with the nemonetd program.

The Neighbor Discovery module and Address

Management module provide the same function-

ality as the KAME Mobile IPv6. The difference

is in the method used for event notification . In

the KAME Mobile IPv6, these modules send the

events directly to the Movement Detection module

as shown in Fig. 3. In SHISA, the events are sent

to the user space programs via the Mobility Socket.

The Mobility Socket is a newly designed socket

interface to exchange mobility related information

between the kernel and user space programs, and

also between user space programs. The Mobility

socket is discussed in Section 4. 5.

The Binding Management module in SHISA

manages the binding information database in the

kernel. These databases are subset of the mas-

ter database managed by the mnd/mrd or had

programs. The binding databases in the kernel

only keeps the minimum information necessary

for packet input/output processing. The detailed

packet processing will be discussed in Section 4. 8.

The Destination Options Header module and

Routing Header module provide the same function-

ality as those of the KAME Mobile IPv6.

The Routing Table Management module is the

existing module and is used to manage routing en-

tries for tunnel interfaces used by the NEMO BS

function.

4. 5 Mobility Socket

The operation of Mobile IPv6 and NEMO BS is

similar to the existing routing operation. When we

started to design the SHISA stack, we referenced

the existing BSD Routing Socket mechanism [18].
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Fig. 4 The SHISA system configuration. Same as Fig. 3, the dotted boxes are modules that exist

in the base KAME IPv6 protocol stack. The shaded boxes are modules that did not require any

modification to support Mobile IPv6. The boxes with solid lines are newly introduced modules for

Mobile IPv6.

In the routing mechanism, the role of the kernel

is to keep the routing table and forward packets

based on that table. The kernel itself does not ex-

change any routing information. The information

exchange is done by routing daemon programs run-

ning in user space. This design has several benefits.

For example, we can avoid implementing a complex

routing algorithm in kernel space, where a trivial

mistake sometimes causes a serious problem like a

kernel panic. Also debugging user space programs

is easier than debugging a kernel, because we can

utilize many advanced debugging programs.

We took a similar approach to the one used by

the routing mechanism. The kernel keeps tables of

binding information and transmits packets based

on the tables. The update of the tables is per-

formed by the user space programs which run on

the MN, HA and CN. We designed a new socket,

the Mobility Socket (MIPSOCK ) [8], to exchange

the mobility related information between the kernel

and user space programs, and between two or more

user space programs. It might be possible to reuse

the Routing Socket to exchange mobility informa-

tion, however we did not choose this approach for

following two reasons.

• To minimize the impact to the existing pro-

grams which rely on the Routing Socket

• Information semantics are different from rout-

ing information

We already have several programs which use the
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Table4 The subset of the MIPSOCK messages.

Message Description

MIPM_BC_ADD Add/Update binding infor-

mation on HA or CN

MIPM_BC_REMOVE Remove binding informa-

tion on HA or CN

MIPM_BUL_ADD Add/Update binding infor-

mation on MN or MR

MIPM_BUL_DELETE Remove binding informa-

tion on MN or MR

MIPM_MD_INFO Notify movement with a

new CoA to MN or MR

MIPM_HOME_HINT Notify returning home to

MN or MR

MIPM_RR_HINT Notify there is tunneled

traffic to MN

MIPM_BE_HINT Notify a protocol error oc-

curred in the kernel and in-

sist to send an error mes-

sage to a peer node

Routing Socket. The routing function is one of the

core functions for IP nodes to connect to the In-

ternet. We must avoid causing problems by adding

new messages to the Routing Socket. One of our

goals is to merge our code to the original BSD dis-

tributions. Importing a big change to the existing

stable functions is usually difficult. Designing a

separate mechanism for a new feature seemed to

be more reasonable. Also, not all the information

we exchange using MIPSOCK between SHISA pro-

grams and the kernel are routing related informa-

tion. For example, the kernel sends a hint message

to user space programs that the node has received

a tunneled packet. Another example is a hint mes-

sage from the kernel to user space programs to in-

sist on sending an protocol error message. In this

sense, using the Routing Socket does not seem to

be appropriate.

A subset of MIPSOCK messages are listed in Ta-

ble 4. The most important point here is that, these

messages are not only used for communications be-

tween user space programs and the kernel, messages

are also used between user space programs to ex-

change information. This mechanism provides an

easy way to get the current situation of the mo-

bility stack asynchronously and provides extensi-

bility to other programs related to mobility. For

example, MIPM_MD_INFO is issued by the babymdd

program and is received by the mnd or the mrd

program. Other examples are MIPM_BUL_ADD and

MIPM_BC_ADD messages. These messages are issued

by the mnd and had programs to add binding in-

formation. To add the NEMO BS feature to the

SHISA stack, we implement nemonetd to mon-

itor these messages and establish a bi-directional

tunnel. Thanks to MIPSOCK, we could minimize

the modification to the mnd or had programs to

support the NEMO BS feature.

4. 6 Movement Detection

Movement detection in our Mobile IPv6 stack

is based on the result of an unreachability detec-

tion of the routers of the network with which the

MN is currently connected. When an MN receives

a Router Advertisement message, it always sends

a Router Solicitation message which changes all

router’s reachability status to the PROBE state.

The PROBE state is defined to require a reacha-

bility confirmation procedure in the Neighbor Dis-

covery specification [9]. Thus, the MN will check

the reachability state of all routers, after it receives

a Router Advertisement message.

The next step in the movement detection is the

validation of the address currently used as a CoA.

The KAME IPv6 stack has strong relationship be-

tween the reachability of a router and the prefix

advertised by the router. If a router becomes un-

reachable, the prefixes advertised by the router are

marked as detached prefixes [5], which are still valid

but no longer preferred. As a result the address

generated from the prefix becomes a non-preferred

address. The MN checks its CoA at this point, and

change it to one of the other preferred addresses if

the CoA currently used is detached. This algorithm

covers most of the general movement scenarios in

real usage.

Movement detection is the most difficult part of

a mobility stack implementation. Although the

movement detection should be ideally done in the

IP layer, the performance of the detection is often

slow, if we rely only on the IP layer information

to detect movement. We may need several seconds

to detect movement because of many required pro-

cesses, e.g. configuring a CoA by receiving a Router

Advertisement message, making sure that the ad-

dress is not duplicated, checking all routers’ status

to invalidate the current CoA, and processing Mo-

bile IPv6 signal messages. This delay is sometimes
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Fig. 5 The primary state machine of a binding

update list entry.

critical for real-time applications.

It is known that if we use the layer 2 information,

we can detect movement much faster [20]. In the

KAME Mobile IPv6, the movement detection mod-

ule was implemented in the kernel and tightly inte-

grated to it. Thus, it was hard to modify the detec-

tion algorithm or replace the module with another

scenario specific version of the movement detection

algorithm. In the SHISA stack, we designed it as

a replaceable module. We provide a simple move-

ment detection program (babymdd) that performs

almost the same process as the KAME Mobile IPv6

movement detection program, however the user of

the SHISA stack can implement a special movement

detection module based on their local scenario and

background layer 2 technologies.

4. 7 Binding Management

The binding update list entry is managed by an

MN or MR to represent the binding between a CoA,

HoA, and peer address, to perform the RR proce-

dure and the RO communication. We implemented

the entry as a finite state machine as shown in Fig. 5

and 6. The circles in the figures mean states and

the texts written in a bold font mean the events

of the state machine. When an event occurs, the

corresponding action (written in parenthesis) of the

event is performed and the state is changed based

on the arrow. Table 5 lists all the states of the

entry and Table 6 lists all the events of the state

machine.

The state machine is a two-layered state machine,

START

WAITHC

WAITCWAITH

START_RR:
(Send CoTI, 
Send HoTI)

COT: HOT:

HOT:

START_HOME_RR:
(Send a HoTI message)

TIMEOUT:
(Send CoTI, 
Send HoTI)

TIMEOUT:
(Send a CoTI message)

TIMEOUT:
(Send a HoTI message)

COT:

Fig. 6 The secondary state machine of a

binding update list entry.

Table5 The list of status values of a binding

update list entry.

Value Description

IDLE The initial state of a primary state ma-

chine.

RRINIT Performing the RR procedure. No

valid binding exists.

RRREDO Performing the RR procedure for re-

registration. A valid binding exists.

RRDEL Performing the RR procedure for de-

registration.

WAITA Waiting for an Binding Acknowledge-

ment (BA) message. No valid binding

exists.

WAITAR Waiting for an BA message for re-

registration. A valid binding exists.

WAITD Waiting for an BA message for de-

registration.

BOUND Valid binding exists.

START The initial state of a secondary state

machine.

WAITHC Waiting for a Home Test and Care-of

Test messages.

WAITH Waiting for a Home Test message.

WAITC Waiting for a Care-of Test message.

one for the binding information registration pro-

cedure and the other for the RR procedure. The

latter state machine runs when the state of the

first state machine is either RRINIT, RRREDO

and RRDEL.

When the entry reaches the BOUND state, the

tunnel link between the MN and its HA is estab-

lished, if the entry’s peer node is the HA. While

this entry stays in the BOUND state, the MN can
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Table6 The list of events of a binding update

list entry.

Name Description

MOVEMENT Moved to other foreign net-

work.

RETURNING HOME Returned to home.

REVERSE PACKET Received a bi-directional

packet.

RR DONE The return routability pro-

cedure has been completed.

BA Received a BA message.

TIMEOUT A retransmission timer ex-

pired.

START RR The RR procedure is initi-

ated.

START HOME RR The RR procedure for re-

turning home is initiated.

STOP RR The RR procedure is aborted.

HOT Received a Home Test mes-

sage.

COT Received a Care-of Test

message.

Table7 The list of status values of a binding

cache entry.

Value Description

BOUND Valid binding exists.

WAITB Waiting for an BA message for de-

registration.

WAITB2 Waiting for an BA message for de-

registration.

send or receive packets addressed to its HoA using

the tunnel link as explained in Section 2. If the

entry’s peer node is a CN, then the state means

the MN can perform RO communication with the

CN. The detailed packet processing is discussed in

Section 4. 8.

The binding cache entry is managed by the HA or

CN that represents the binding between the node

and the communicating MN’s HoA and CoA. The

binding cache entry is implemented as a simple fi-

nite state machine as described in Fig. 7. Table 7

lists all the states of the entry and Table 8 lists all

the events of the state machine.

When the state machine receives a valid BU

message, it immediately changes its state to the

BOUND state. The state changes to the WAITB

and WAITB2 state before the lifetime of the bind-

ing information expires. If the entry does not re-

BOUND

Initial

WAITB WAITB2

TIMEOUT:

BU:

BU:

TIMEOUT:
(Send a Binding
Refresh Request

message)

TIMEOUT:
(Send a Binding
Refresh Request

message)

BU:

Fig. 7 The state machine of a binding cache

entry.

Table8 The list of events of a binding cache

entry.

Name Description

BU Received a BU message.

TIMEOUT A timer expired.

ceive any BU message in these states, the entry will

be removed. To extend the lifetime, the state ma-

chine of the entry will send a Binding Refresh Re-

quest message in the WAITB2 state. The message

is one of the Mobile IPv6 signaling message that

requests an MN send a BU message. While the

entry exists the node uses Type 2 Routing Head-

ers when sending packets to the HoA bound in the

cache entry. If the node is an HA, then it also in-

stalls a proxy Neighbor Discovery entry to intercept

all traffic destined to the MN related to the bind-

ing cache entry and establishes a tunnel entry to

the MN.

Similar to the binding update list entry, the

BOUND state means that the HA can use its tun-

nel link established between the HA and its MN.

4. 8 Packet Input/Output

The performance of the forwarding module im-

pacts the total performance of the stack. While

we implement all signaling processing in the user

space programs, the normal packet input/output

processing is implemented in the kernel to avoid
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ip6_output()

Datalink layer 
input

Application 
socket output

nd6_output()

ip6_input()

ip6_forward()

nemo_output()

Datalink layer 
output

Binding Update 
DB lookup

mip6_output()

Binding Update 
DB lookup

Fig. 8 Bi-directional output on MN.

performance degradation. As shown in Fig. 4, the

kernel has a subset of the binding information man-

aged by the user space programs. When sending or

receiving packets, the stack checks the binding in-

formation in addition to the routing table.

There are 8 paths with regard to the packet pro-

cessing in a mobility context.

1. A MN outputs packets using a bi-directional

tunnel.

2. A MN inputs packets using a bi-directional

tunnel.

3. A MN outputs packets using the RO commu-

nication.

4. A MN inputs packets using the RO commu-

nication.

5. A HA intercept packets for an MN and for-

ward them.

6. A HA receives tunneled packets from an MN.

7. A CN output packets using the RO commu-

nication.

8. A CN input packets using the RO communi-

cation.

Fig. 8 shows the call flow of the case 1. A packet

generated in an MN reaches to the nd6_output().

The nd6_output() checks if the source address of

the packet is the HoA of the MN and the status of

the binding information. If a valid binding exists,

the packet is passed to the mip6_output() function

to tunnel it to the HA of the MN.

The left side flow shows the packet flow of a mo-

nemo_input() mip6_tunnel_input()

ip6_input()

Datalink layer 

input

ip6_forward() upper layer input

Application 

socket output
ip6_output()

ip6_input()

Fig. 9 Bi-directional input on MN.

bile network when the MN is acting as an MR. A

packet generated in the mobile network is received

by the MR and reaches the nd6_output() via the

ip6_input(), ip6_forward() and ip6_output().

In the MR case, the packet is passed to the

nemo_output() function which is the input function

of NEMO BS tunneling created by the nemonetd

program. The nemo_output() function sends the

packet using the tunnel link established between

the MR and the HA.

Fig. 9 shows the case 2. An MN receive a tunnel

packet from either the nemo_input() function or

mip6_tunnel_input() function. The former is used

for NEMO BS and the latter is used for the Mobile

IPv6 processing. If the packet is addressed to the

mobile network, it is passed to ip6_forwarding(),

otherwise it is passed to the upper layer input rou-

tine of the node.

For historical reasons, we have two tunnel mech-

anisms. When we implemented the SHISA stack,

it only supports Mobile IPv6 and was using the

mip6_output() and mip6_tunnel_input() func-

tions. These functions were not designed to pro-

cess forwarding cases. Because of this, we added

another tunneling functions that support forward-

ing cases for NEMO BS. This design should be re-

viewed.

Fig. 10 shows cases 3 and 7. When a

packet is processed in the ip6_output() func-

tion, the function calls two other functions:
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ip6_output()

nd6_output()

Datalink layer 
output

Upper layer 
output

mip6_create_
rthdr2()

mip6_create_
hoa_opt()

Binding Cache 
DB lookup

Binding Update 
DB lookup

Fig. 10 Route optimized output on MN.

ip6_input()

dest6_input()

mip6_input()

route6_input()

mip6_bce_get()

dest6_swap_hao()

dest6_mip6_hao()

upper_layer_input()

ip6_rthdr2()

rip6_input()

Application socket 

input

Application socket 

input

Datalink layer 

input

Fig. 11 Route optimized input on MN.

mip6_create_rthdr2() and mip6_create_hoa_opt().

The mip6_create_rthdr2() function looks up the

binding cache database and checks if there is a valid

entry for the destination node. If an entry ex-

ists it creates a Type 2 Routing Header and sends

the packet directly to the destination MN (case 7).

The mip6_create_hoa_opt() function looks up the

binding update database and creates a Destination

Options header with a HAO option. The packet is

not tunneled to the HA rather it is sent directly to

the peer node (case 3).

Fig. 11 shows cases 4 and 8. The route opti-

mized packet has a Destination Option Header (the

HAO option) or a Type 2 Routing header. The

IPv6 stack has already defined the processing rou-

tines for the Destination Options Header and the

Routing Header. In SHISA, we extended these

header processing routines to support Mobile IPv6

related data, that is the HAO option and the Type

2 Routing Header. These headers are processed

in the dest6_input() and route6_input() func-

ip6_input()

ip6_forward()

nemo_output()

mip6_encapsulate()

nd6_output()

ip6_output()

Binding Cache 
DB lookup

Binding Cache 
DB lookup

Datalink layer 
output

Datalink layer 
input

Fig. 12 Bi-directional output on HA.

tions. The two functions; the dest6_swap_hao()

and the dest6_mip6_hao(), swap the HoA stored

in the HAO option and the source address field of

the input IPv6 header. By swapping the source

address (CoA) and HoA, upper layer protocols do

not need to know the location of the MN. We use

two different locations to swap these addresses for

security, discussed in Section 4. 9.

Fig. 12 shows the case 5. An HA intercepts

packets destined to the HoAs of MNs it is serv-

ing. These packets are input to the ip6_input()

function by the proxy Neighbor Discovery mecha-

nism. The packets are passed to the ip6_forward()

function because the destination address is not one

of the HA’s addresses. If the packet is addressed

to the HoA of one of the MNs, the HA calls the

mip6_encapsulate() function to send the packet

to the tunnel link between the HA and the MN

which is the owner of the HoA. If the packet is ad-

dressed to the mobile network, the nemo_output()

function is used instead.

Fig. 13 shows the case 6. The packet tunneled

from an MN is passed to either nemo_input()

or mip6_tunnel_input() function. The packet is

passed to the ip6_input() function again and for-

warded to the destination node of the packet. For

the same reason as we discussed in Fig. 9, we have

two tunnel input functions, one for Mobile IPv6

and the other for NEMO BS.
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Fig. 13 Bi-directional input on HA.

4. 9 Home Address Verification

When an MN sends a route optimized packet

to other nodes, it inserts an HAO option into the

packet. The node that receives such a packet swaps

the HoA contained in the HAO and the source ad-

dress of the packet. The upper layer stacks and ap-

plications do not notice the actual location of the

MN thanks to this swap procedure. However, if the

procedure is performed without any verification of

the HoA, any malicious node can steal arbitrarily

HoAs of other legitimate nodes.

The verification is based on the existence of bind-

ing information related to the HoA. If the bind-

ing entry exists, the HoA is accepted. The ad-

dress stored in the HAO option and the address in

the IPv6 source address field can be swapped im-

mediately (see the dest6_swap_hao() function in

Fig. 11).

The problem arises during the processing algo-

rithm of the initial message (a BU message) that

contains an HAO option. Although the message

contains an HAO option, there is no valid binding

information before accepting the first BU message.

Thus, we cannot use the algorithm described above.

For a BU message, the validity check of the HAO

option is done by cryptographic methods. The Mo-

bile IPv6 specification defines that an MN and an

HA must protect the BU/BA messages by the IPsec

mechanism. This means, if the packet is protected

by the IPsec header, we can accept the packet with

a HAO option. However, the solution is not so easy.

The IPsec processing is performed on the logical

format of the packet. That is, the IPsec header as-

sumes that the source address is a HoA. We have

to swap the HoA in the HAO and IPv6 source ad-

dress before performing IPsec verification. In our

implementation, we delayed the swap operation un-

til we see the IPsec header in the input packet. In

Fig. 11, the function dest6_mip6_hao() is called

from the ip6_output() function. The function is

called every time the ip6_output() function pro-

cesses the header chain of the input packet. The

dest6_mip6_hao() function swaps addresses if the

next header to be processed is either the Authenti-

cation Header or the Encapsulation Security Pay-

load. If the receiving node has a valid IPsec secu-

rity association, the BU/BA message will pass the

IPsec verification, otherwise it is dropped.

For a BU message sent to a CN, we cannot use

the same mechanism, because a BU message sent to

a CN is not usually protected by the IPsec mecha-

nism. The specification defines that a BU message

to a CN must be cryptographically protected by the

RR procedure. Thus, the stack accepts a BU/BA

message even if it does not have IPsec headers. The

dest6_mip6_hao() function checks the next header

to be processed, and if the next header is a Mobility

Header and the message type is BU, the function

swaps the HoA in the HAO and the source address

of the IPv6 header. The BU message will be val-

idated in the processing routine of a BU message

with the RR procedure. If the BU message has

been sent as a result of the proper RR procedure,

the message will pass the cryptographic verifica-

tion, otherwise it is dropped.

4. 10 Multiple Care-of Address

In the Mobile IPv6/NEMO BS specifications, it

is impossible for MN/MR to register multiple CoAs

at the same time. However considering the recent

progress of wireless technologies, it is getting more

common for mobile devices to have multiple net-

work interfaces. Using multiple interfaces enables

efficient usage of network property/bandwidth and

increases fault tolerance in case of network prob-

lems [3]. We have implemented the Multiple

Care-of Address support protocol [23]. Currently,

this function is available only for MR. The exten-

sion is implemented by adding an unique identi-
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fier field to the MIPM_BUL_ADD, MIPM_BUL_ADD and

MIPM_MD_INFO messages and adding a field to keep

the identifier in the binding databases. The iden-

tifier is bound to each CoA assigned to the MR.

Usually the HA routes packets based on the HoA

of each MR. In this case, the HA cannot distin-

guish the binding between (HoA, CoA1) and (HoA,

CoA2). In this extension, each MR is identified

by the pair of its HoA and an identifier. In the

SHISA implementation, the identifier is mapped to

a tunnel interface. If MR has two network inter-

faces for CoAs and registers these two CoAs at the

same time, the MR and its HA will have two tun-

nel interfaces between them, each tunnel is bound

to each identifier assigned to the network interfaces

of the MR. The MR and the HA can utilize these

tunnels based on local policy. For example, they

can use one tunnel as a primary interface and the

other for backup. Or, if they have two interfaces

which properties are different, e.g. one interface is

low-bandwidth and low-latency, the other is high-

bandwidth and high-latency, then they may use

the former for urgent messages and the latter for

data transmission. Since we have implemented this

mechanism as a tunnel interface, we can use the ba-

sic packet filtering mechanism, such as IP Filter [11]

to distribute traffic.

4. 11 IPv4 Mobile Network Prefix

When NEMO BS was specified, most people in-

volved in the discussion did not think they would

need IPv4 NEMO support. However, considering

the current rate of IPv6 deployment, it will require

more time than we originally expected, therefore

some kinds of IPv4 support will be necessary. We

proposed a mechanism to carry IPv4 traffic over

a tunnel interface created by NEMO BS mecha-

nism [12]. With this mechanism, MR can have

an IPv4 MNP in addition to an IPv6 MNP. The

benefit of this mechanism is that users of an MR,

that supports this extension, can operate IPv4 net-

works over an IPv6 only infrastructure. This kind

of operation encourages the existing IPv4 users to

move IPv6 infrastructure [13], since NEMO BS can

provide fault tolerance and load-balance or traffic

engineering using the Multiple CoA support as dis-

cussed in Section 4. 10. SHISA is extended to keep

IPv4 MNPs in its binding database and extended

to forward IPv4 packets, whose prefix is registered

as a part of MNP, using the tunnel interface estab-

lished between the MR and its HA.

4. 12 SHISA Problems

The main problem for SHISA is its tunneling

mechanism. As discussed in Section 4. 8, SHISA

has two different tunnel mechanisms, one for Mo-

bile IPv6 traffic, the other for NEMO BS traffic.

The former is implemented as an in-kernel tun-

neling mechanism and the latter is implemented

as a pseudo network interface. In Section 4. 10,

we provide the Multiple Care-of Address Registra-

tion function only for MRs. The reason why we

could not provide the same function to Mobile IPv6

comes from the difference in the tunnel design. To

distribute traffic to multiple tunnel interfaces, we

used the IP Filter mechanism. The mechanism

works with the pseudo interfaces but does not work

with the in-kernel tunneling mechanism. We will

have to fix this problem.

4. 13 SHISA Applicability

We have performed various experiments and

demonstrations using the SHISA stack that proves

the applicability of the stack. In 2005, we used our

implementation to provide transparent network ser-

vice in an actual conference network infrastructure

[15]. In 2006, we performed a similar operation at

a conference using the Multiple CoA Registration

mechanism to provide a smoother handover expe-

rience [16]. We also had some demonstration activ-

ities to advertise the IPv6 mobility technology, e.g.

at the First IPv6 Summit in Thailand [14], and the

CEATEC 2006 exhibition which is the largest con-

sumer electronics exhibition in Japan. The SHISA

stack is also used as the base mobility service sys-

tem by the Home Agent Web User Interface activity

[4] [1] in the Nautilus6 project [10].

5 Discussion

We started to implement the Mobile IPv6 stack

as a part of the kernel function. In the beginning,

it seemed to be a better and faster way to create

a working stack, because implementing all func-

tions in the kernel is similar to adding new func-

tions to a single program. Even though the size

of the kernel code is huge, it is a single program.

Since we already had a good foundation in kernel
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Table9 The code size of each mobility stack

(in line numbers).

KAME Mobile

IPv6

SHISA

kernel (core) 15750 5470

kernel (Mobiliy Socket) n/a 811

user space 3000 17078

programming, through the KAME project activity,

implementing the stack in the kernel shortened the

development time. The first version of the code

was released in October 2001, about 4 months af-

ter beginning of the development. After the spec-

ification became stable around June 2003, when

the final draft of the Mobile IPv6 specification was

published, we started considering the addition of

new features. At this point, the specification was

stable enough and we decided to redesign the en-

tire stack to solve problems we had in the kernel

implementation as described in Section 3. 3. The

new code, SHISA, was implemented mostly as user

space programs with minimum kernel support. The

first release was December 2004, 8 months after be-

ginning. It took twice the time to achieve the ini-

tial release of the stack, however SHISA provides

not only Mobile IPv6 but also NEMO BS from the

beginning. Thanks to the redesigning, we could

implement NEMO BS easily on top of the SHISA

stack. Also, as discussed in Section 4. 10 and 4. 11,

some more new features were added to SHISA later

without big architectural changes.

The code size of each implementation is shown

in Table 9. The modified code size of the SHISA

kernel is reduced to 40% of that of the KAME Mo-

bile IPv6 kernel. The smaller the modification size

is, the easier to merge the code to the original BSD

distribution is. Opposite to the kernel size, the user

space program size of SHISA became larger about

6 times than that of the KAME stack. This is un-

derstandable given the size of the KAME Mobile

IPv6 kernel and the size of the user space program

of SHISA is almost the same. Since we moved most

of the functions of mobility processing from the ker-

nel to user space, it is not surprising that the size

of the user space programs is almost equal to the

old kernel code. Even if we have moved most of the

functions to the user space, the SHISA kernel still

has about 6000 lines for mobility processing. This

is because we have to leave the subset of binding

database management code in the kernel and we

need a interface layer (the Mobility Socket mech-

anism described in Section 4. 5) between the user

space and the kernel to exchange mobility informa-

tion. The code size of the interface layer is 811 lines

occupying about 12% of the kernel mobility code.

The total code size of the SHISA stack will be

larger than that of the KAME Mobile IPv6. How-

ever, despite of the drawback, we believe keeping

the mobility protocol implementation in the user

space is better, because of its ease of maintenance

and extensibility when importing more advanced

features defined in the future.

Because we moved the signal processing code to

the user space, we foresaw some performance degra-

dation in signal processing. In the KAME Mobile

IPv6, the signaling packet is handled in the kernel.

Creation and updating of binding information are

done while the packet is being processed. In con-

trast, the SHISA escalates signaling packets to the

user space and processes them there. The bind-

ing information stored in the kernel is created or

updated from the user space using the Mobility

Socket mechanism. Eventually, we have to perform

the context switch between the kernel and the user

space twice to handle one signaling packet.

We measured the processing time of a Binding

Acknowledgement packet with both the KAME

Mobile IPv6 and SHISA stack. In the KAME

Mobile IPv6, the processing of the Binding Ac-

knowledgement packet is completed in one func-

tion, mip6_ip6ma_input(). Thus, we measured

the time difference before and after the function is

called. In the SHISA stack, the Binding Acknowl-

edgement message is received by the general sig-

nal processing function mip6_input() and passed

to the IPv6 raw socket mechanism to deliver the

message to the user space. Once the packet is

processed, the SHISA user space program updates

the related binding information using the Mobil-

ity Socket mechanism. Thus, we recorded the time

from when the Binding Acknowledgement message

is received by the mip6_input() function, and com-

pare it to the time after the binding information is

updated. Fig. 14 shows the measurement points

and Table 10 shows the result.

The processing time of a Binding Acknowledge-

ment message of the SHISA stack is about 2.4 times
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ip6_input()
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Binding Ack packet input Binding Ack packet input
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Measured processing 
time of a Binding 
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Fig. 14 Measurement points of a Binding

Acknowledgement message processing time for

the KAME Mobile IPv6 and the SHISA stack.

Table10 Comparison of processing time (in

microseconds) of signaling packets between the

KAME Mobile IPv6 and the SHISA stack.

KAME Mobile IPv6 SHISA

Average of 20

messages

25.85 62.15

Standard De-

viation

5.55 19.01

slower than that of the KAME Mobile IPv6. Ex-

amining the different values for the standard devi-

ation we see that the KAME Mobile IPv6 process-

ing times are more predictable. These results show

that the SHISA stack has performance degrada-

tion. However, we have concluded the degradation

caused by the processing of signal information can

be ignored. The Binding Acknowledgement mes-

sage exchange occurs at most every 4 seconds, usu-

ally less. Suppose we are sending VoIP traffic, the

voice packet size is IPv6 header (40 bytes) + UDP

header (8 bytes) + RTP header (12 bytes) + pay-

load (10 bytes in G.729 codec) = 70 bytes. Since

the voice packets are sent every 20ms, the total

size in 4 seconds will be 14000 bytes. The packet

size of a Binding Acknowledgement message is 52

bytes. Even if we send Binding Acknowledgement

messages at the most frequent rate possible (every

4 seconds), the occupation ratio will be 0.37%. In

a realistic situation, the message will be exchanged

less frequently (in the SHISA implementation, the

default interval is 20 seconds). In addition, as the

data traffic size becomes larger (for example, file

transfer or video communication), the less domi-

nant the occupation ratio becomes. Therefore, the

increased processing time of the signaling messages

in the SHISA stack can be negligible.

6 Software Availability

The SHISA stack is available from the KAME

project’s web site †1, although the KAME project

concluded in April 2006, the source code is still

available from the site. The KAME Mobile IPv6,

although development was terminated, is also avail-

able from the KAME project FTP server†2. The

KAME Mobile IPv6 is included in the KAME dis-

tribution kit dated before December 2004.

7 Conclusion

We implemented the IPv6 mobility stacks based

on the IETF standard mobility specifications and

released the stacks to accelerate the deployment

of the IPv6 mobility technology. The first ver-

sion of the stack (KAME Mobile IPv6) was imple-

mented in the kernel, but the kernel stack design

and its implementation had problems in extensi-

bility and ease of development. We redesigned the

stack moving the mobility signal processing code to

user space. To keep the normal packet processing

performance, the normal packet input/output pro-

cessing code was kept in the kernel. The new stack

(SHISA) can be easily extended to support new fea-

tures. Thanks to this design, we could add NEMO

BS, Multiple CoA Registration and IPv4 mobile

network support to the SHISA stack easily. Also

the SHISA stack will more readily attract third

party development activities [22] [21] thanks to the

user space implementation that is easier to develop

than the kernel development. We made several ex-

periments and demonstrations proving the applica-

bility and stability of the SHISA stack, and to ad-

vertise the IPv6 mobility technology. We are now

focusing on adapting the SHISA stack to the origi-

nal BSD distributions so that the SHISA stack can

be merged into these distributions.

†1 http://www.kame.net/

†2 ftp://ftp.kame.net/pub/kame/snap/
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