
Indexes for Distributed File/Storage Systems as a
Large Scale Virtual Machine Disk Image Storage in

a Wide Area Network
Keiichi Shima

IIJ Innovation Institute
Chiyoda-ku, Tōkyō 101-0051, Japan

Email: keiichi@iijlab.net

Nam Dang
Tokyo Institute of Technology

Meguro-ku, Tōkyō 152-8550, Japan
Email: namd@de.cs.titech.ac.jp

Abstract—In this paper, we will show throughput measurement
results of I/O operations of Ceph, Sheepdog, GlusterFS, and
XtreemFS, especially when they are used as virtual disk image
stores in a large scale virtual machine hosting environment. When
used as a backend storage infrastructure for a virtual machine
hosting environment, we need different evaluation indexes other
than just I/O performance since the number of machines are
huge and latency between machines and storage infrastructure
may be longer in such environment. The simple I/O performance
measurement results show that GlusterFS and XtreemFS per-
form better in read operation cases than Ceph and Sheepdog
even though both are supported by the virtualization software
(QEMU/KVM) natively. For write operation cases Sheepdog
performed better than others. This paper introduces two in-
dexes, ParallelismImpactRatio and LatencyImpactRation, to
evaluate robustness against the number of virtual machines in
operation and network latency. We found that GlusterFS and
XtreemFS are more robust against both increasing number of
virtual machines and network latency than Ceph and Sheepdog.

I. BACKGROUND

The hosting service is one of the major Internet services
which has been provided by many Internet service providers
for long time. The service was originally using physical
computers located in a datacenter to host services of their
customers, however, the virtualization technology changed
the hosting infrastructure drastically. Many hosting services,
except some mission critical services or services which require
high performance, are now providing their services using
virtual host computers.

The important point of virtualization in service operation is
that the efficiency in multiplexing computing resources. We
want to put as many virtual machines as possible as long as
we can keep the service level agreement. A virtual machine
migration technology contributes this goal. If we have multiple
virtual machines which does not consume a lot of resources
in multiple physical machines, we can aggregate those virtual
machines to fewer number of physical machines using a live
migration technology without stopping them.

Usually, such a migration operation is utilized within a sin-
gle datacenter only, however, considering the total efficiency of
service provider operations, we need global resource mobility

strategy among multiple datacenters ([1], [2], [3]). One of the
essential technologies to achieve this goal is a storage system
for virtual machines. When a virtual machine moves from
one physical computer to another computer, both physical
computers must keep providing the same virtual disk image
to the virtual machine. We are typically using NFS or iSCSI
technologies at this moment, however it is difficult to design
a redundant and robust storage infrastructure in a wide area
service operation. Recent research papers show that distributed
storage management systems ([4], [5], [6], [7]) are becoming
mature. We are now at the stage to start considering other
choices when designing a virtual storage infrastructure.

When considering distributed storage systems, just focusing
on the I/O performance is not enough, if we use them as back-
end storage systems for virtual machines. We need evaluation
indexes which are suitable to the virtualization environment.

In this paper, we investigate the possibility and potential
of recent distributed file/storage systems as virtual machine
backend storage systems and evaluate their I/O throughput
in a realistic large scale storage infrastructure which consists
of 88 distributed storage nodes. We then define two evalu-
ation indexes for the virtualization environment; Parallelis-
mImpactRatio and LatencyImpactRatio. We evaluate impact
to the throughput which may be affected by the number
of virtual machines running in parallel and by the network
latency assuming that virtual machines are operated in multiple
datacenters geographically distributed.

II. TARGET SYSTEMS

A. Virtualization

The virtual machine hosting environment we used in this
measurement was QEMU ([8], [9]) and KVM ([10], [11]).
The host operating system was Linux (Ubuntu 12.04.1 LTS)
and the version of QEMU/KVM software was 1.0 (the kvm
package provided for the Ubuntu 12.04.1 LTS system).

B. File/Storage Systems

We selected the following four different stores in this
experiment, with the first three belonging to the hash-based

distribution family, and the last one belonging to the metadata-
based family. The reason of the choice is that these four
systems are well-known and the implementation of these
file/storage systems are publicly available. We are focusing
on the performance of real implementations in this paper.

• Ceph
Ceph ([4], [12]) is a distributed object-based storage
system designed to be POSIX-compatible, and highly
distributed without a single point of failure. On March
2010, Ceph was merged into Linux kernel 2.6.34, en-
abling easy integration with popular Linux distributions,
although the software is still under development. Ceph
provides multiple interfaces to access the data, including
a file system, rbd1, RADOS [13], and C/C++ binding.
In this experiment, instead of the file system interface,
we utilized the rbd interface, which is also supported
by QEMU. This rbd interface relies on CRUSH [14], a
Replication Under Scalable Hashing [15] variant with the
support of uniform data distribution according to device
weights.

• Sheepdog
Sheepdog ([5], [16]) is a distributed object-based storage
system specifically designed for QEMU. Sheepdog uti-
lizes a cluster management framework such as Corosync
[17] or Apache ZooKeeper [18] for easy maintenance of
storage node grouping. Data distribution is based on the
consistent hashing algorithm. QEMU supports sheepdog’s
object interface natively (the sheepdog method2) similar
to Ceph’s rbd interface.

• GlusterFS
GlusterFS ([6], [19]) is a distributed filesystem based
on a stackable user space design. It relies on consistent
hashing to distribute the data based on a file name. The
data is stored on a disk using native formats of a backend
storage node. One of the interesting features of GlusterFS
is that metadata management is fully distributed, therefore
there is no special nodes for metadata management.
GlusterFS provides POSIX semantics to its client nodes.

• XtreemFS
XtreemFS ([7], [20]) is an open source object-based,
distributed file system for wide area network. The file
system replicates objects for fault tolerance and caches
data and metadata to improve performance over high-
latency links. XtreemFS relies on a centralized point
for metadata management and for data access. The file
system provided by XtreemFS is guaranteed to have
POSIX semantics even in the presence of concurrent
access.

TABLE I summarizes the properties of target systems.

III. TESTBED ENVIRONMENT

We utilized StarBED3 [21] which is operated by National
Institute of Information and Communications Technology

1http://ceph.com/wiki/QEMU-RBD/
2http://github.com/collie/sheepdog/wiki/Getting-Started
3http://www.starbed.org/

TABLE II
THE SPECIFICATION OF SERVER NODES

Model Cisco UCS C200 M2
CPUs Intel(R) Xeon(R) CPU X5670 @ 2.93GHz × 2
Cores 12 (24 when Hyper-threading is on)
Memory 48GB
HDD SATA 500G × 2
NIC 0, 1, 2, 3 Broadcom BCM5709 Gigabit Ether
NIC 4, 5 Intel 82576 Gigabit Ether

k011

k012

k019

k021

k100

12@eth0

13@eth0

21@eth0

100@eth0

GlusterFS configuration
* 3 replicas x 2 stripes
* Cluster: k012-k019, k021-k100
* Non brick holders: k040, k060, k080, k100
* Connected to local GlusterFS entity and
 provide a virtual machine storage as a
 filesystem

Ceph configuration
* 2 replicas
* Object storage nodes: k012-k019,
 k021-k100
* Metadata servers: k012, k014, k016, k018
* Monitor servers: k013, k015, k017, k019
* KVM directly uses Ceph storage as a
 virtual machine storage

XtremeFS configuration
* 3 replicas
* Directory server: k013
* Metadata and Replica Catalog: k012
* Connected to local XtremeFS entity and
 provide a virtual machine storage as a
 filesystem

sheepdog configuration
* 3 replicas
* Zookeeper: k012-k019

1@eth0

Experiment Network
10.1.0.0/24

11@eth4

12@eth4

13@eth4

21@eth4

100@eth4

Management Network
172.16.23.0/24

Fig. 1. Node layout of distributed file/storage systems

Japan4. StarBED provides more than 1000 server nodes inter-
connected via 1Gbps switches which can be reconfigured to
topologies suitable for our experiment plans. More information
is available from the web page.

In this experiment, we used 89 server nodes to build
distributed file/storage system infrastructure. The server spec-
ification is shown in TABLE II.

The upstream switch of the servers were Brocade MLXe-32.

IV. LAYOUT OF SERVICE ENTITIES

A. Measurement Management

Fig. 1 shows the layout of service entities of each distributed
file/storage system. The measurement topology consisted of 89
nodes.

The k011 node was used as a controller node from where we
sent measurement operation commands. k011 was also used as
a NFS server to provide shared space to record measurement
result taken on each server node. All the traffic to control
measurement scenarios and all the NFS traffic were exchanged
using the Management Network (the left hand side network of
Fig. 1) to avoid any affect to the measurement.

B. Distributed File/Storage Systems

All the nodes were attached to the Experiment Network
using a BCM5709 network interface port (the right hand side
network of Fig. 1). The file/storage systems consisted of 88
nodes, using from k012 to k100 except k020. Most of the

4http://www.nict.go.jp/en/index.html

TABLE I
SUMMARY OF TARGET FILE/STORAGE SYSTEMS

Ceph Sheepdog GlusterFS XtreemFS
Metadata management Multiple metadata servers n/a Distributed Centralized
Data management CRUSH Consistent hasing Consistent hashing Key-Value
Storage style Object-based Object-based File-based Object-based
File system Yes No Yes Yes
QEMU native support rbd sheepdog No No
Data access entry point Monitor node any Sheepdog node any GlusterFS server node Metadata server
WAN awareness No No No Yes

nodes worked as a simple storage node entity, except a few
nodes which had some special roles as described below.

• Ceph
Ceph requires two kinds of special nodes for its operation.
One is a Metadata Server, the other is a Monitor. In
the measurement topology, k012, k014, k016, and k018
acted as metadata servers. k013, k015, k017, k019 acted
as monitors. These nodes also acted as storage devices
(it is called as Object Storage Node, OSD). The rest of
the nodes acted as OSDs.
Ceph keeps multiple copies of data object for redundancy.
The number of the copies kept in the system is config-
urable. In the experiment, we chose 2 as the replication
factor in the system.

• Sheepdog
Sheepdog requires a group communication infrastructure
to monitor nodes joining and leaving the storage entity.
In the experiment, Apache ZooKeeper was used for that
purpose. k012 to k019 were used for the ZooKeeper
service. All the nodes including k012 to k019 acted as
participating nodes of Sheepdog.
The Sheepdog storage system was formatted to use a
replication factor of 3 in this experiment.

• GlusterFS
The metadata management in GlusterFS is fully dis-
tributed, so there is no special nodes like a metadata
server. GlusterFS provides the replication and striping
function for redundancy and performance enhancement.
In the experiment, the replication factor was set to 3 and
the striping factor was set to 2.
Since GlusterFS requires the total number of nodes to be
a multiple of the value of replicas × stripes, the number
of participating nodes must be divisible by 6 in this case.
Therefore, k040, k060, k080, and k100 were not used
as a participating node in GlusterFS. The remaining 84
nodes were used to construct the GlusterFS system.

• XtreemFS
XtreemFS requires two kinds of special nodes. One is
a Directory Server, the other is a Metadata and Replica
Catalog, MRC. k013 was used as a directory server, and
k012 was used as a MRC.
As similar to other systems, XtreemFS can have multiple
copies of data object. In the experiment, 3 copies of data
were kept in the system.

k012

k013

k021

k040

10.1.0.0/24

12@eth0

13@eth0

21@eth0

40@eth0

0.1@virbr0

vm1010

1.10@eth0
10.10.0.0/16

0.1@virbr0

vm1020

1.20@eth0
10.10.0.0/16

0.1@virbr0

vm1030

1.30@eth0
10.10.0.0/16

0.1@virbr0

vm1220

1.220@eth0
10.10.0.0/16

k011 1@eth0

k012, k013, k021 to k040 nodes have virtual machines 10.10.1.10 to 10.10.1.229 (vm1010 to vm1220)
k014, k015, k041 to k060 nodes have virtual machines 10.10.2.10 to 10.10.2.229 (vm2010 to vm2220)
k016, k017, k061 to k080 nodes have virtual machines 10.10.3.10 to 10.10.3.229 (vm3010 to vm3220)
k018, k019, k081 to k100 nodes have virtual machines 10.10.4.10 to 10.10.4.229 (vm4010 to vm4220)

Fig. 2. The layout of virtual machines

Since each server node has two disks, the storage space
in each storage nodes was allocated in a different disk (in the
second disk) from the boot drive (the first disk) which contains
OS and other system software.

C. Virtual Machines

All the nodes except k011 acted as QEMU hypervisors. Fig.
2 shows the topology for virtual machines. Each hypervisor
has one virtual machine. The network provided at each hy-
pervisor for virtual machines is a NATed network built by a
network bridging function and NAT software. We used the
bridge-utils package and the dnsmasq-base package provided
for the Ubuntu 12.04.1 LTS system.

Virtual machine disk images were served by the QEMU hy-
pervisor. Depending on the underlying distributed file/storage
systems, the following configuration parameters were used.

• Ceph
QEMU has a built-in Ceph OSD disk image support
as the rbd method. A virtual machine disk image was
divided into units of the Ceph OSD object, and distributed
through the OSD system.

• Sheepdog
QEMU has a built-in Sheepdog disk image support as

the sheepdog method. Similar to Ceph, a virtual machine
disk image was divided into units of the Sheepdog object
and distributed among the storage entities.

• GlusterFS
At this time of writing, QEMU does not have any
direct support of GlusterFS. Since GlusterFS provides
an ordinal filesystem interface, we simply mounted the
GlusterFS using FUSE [22] on each hypervisor and put
all the virtual machine disk images into the mounted
directory. Each disk image was divided into two pieces
(since we used the striping factor of 2), and 3 copies of
each piece were distributed among the storage entities.

• XtreemFS
There is no XtreemFS direct support in QEMU either.
Similar to the GlusterFS operation, we mounted the
XtreemFS volume on each hypervisor using FUSE and
put all the virtual machine disk images in the directory.
Each disk image was divided into units of the XtreemFS
object and distributed to the storage entities.

V. MEASUREMENT PROCEDURES

The main goal of this measurement is to evaluate the
maximum performance we can achieve when we use dis-
tributed file/storage systems as virtual machine disk image
storage systems, and to evaluate their robustness against the
number of running virtual machines and network latency. The
measurement tool used in the experiment was the Bonnie++
benchmark software [23].

To evaluate the impact of the scale of the virtual machine
infrastructure, we conducted four types of tests:

• Parallel-1
In the Parallel-1 case, only one virtual machine exe-
cutes the measurement program. That means the virtual
machine can occupy the entire distributed file/storage
systems in this case. We run the measurement program
on ten different virtual machines sequentially.

• Parallel-10
In the Parallel-10 case, 10 different virtual machines run
the measurement command simultaneously. Each virtual
machine is located in different hypervisors.

• Parallel-20
Same as the Parallel-10 case, except the number of virtual
machines is 20.

• Parallel-44
Same as the Parallel-10 case, except the number of virtual
machines is 44.

We also performed the same measurement in a network
environment with different latency aiming to emulate wide
area network as shown in Fig. 3. We divided 88 storage nodes
into 4 groups, each of which has 22 nodes. Nodes in the same
group can communicate without any delay, however, nodes
in different group have 10ms delay in each direction. This
configuration roughly emulates four datacenters located in four
different locations.

k012 k013

k021 k040

k014 k015

k041 k060

k016 k017

k061 k080

k018 k019

k081 k100

RTT
20ms

RTT
20ms

RTT
20ms

RTT
20ms

RTT
20ms

RTT
20ms

Fig. 3. The latency parameter configuration

VI. RESULTS

A. Write Throughput

Fig. 4 shows the result of the throughput measurement of
write operations. Each bar in the figure corresponds to each
virtual machine.

In character write operations (Fig. 4(a)), we can observe
Ceph and Sheepdog show slightly better performance than
GlusterFS and XtreemFS in the Parallel-1, Parallel-20, and
Parallel-44 cases. When the number of parallel operation
increases, fluctuation of the throughput is observed especially
in Sheepdog, GlusterFS, and XtreemFS cases. Ceph is more
stable than others.

In block write operations (Fig. 4(b)), Ceph shows twice
as much throughput as that of Sheepdog and five times as
much throughput as those of GlusterFS and XtreemFS cases,
as long as the number of running virtual machine is one. When
we run multiple virtual machines in parallel, Sheepdog gives
better performance than others. Sheepdog, GlusterFS, and
XtreemFS show some fluctuation in their throughput results.
Ceph works more stable than others, however, its throughput is
worse especially when the number of parallel virtual machines
increases.

B. Read Throughput

Fig. 5 shows the result of the throughput measurement of
read operations.

In character read operations (Fig. 5(a)), GlusterFS and
XtreemFS perform slightly better than Ceph and Sheepdog.
We can observe many missing bars in the result of GlusterFS
and XtreemFS. This is expected behavior of Bonnie++. When
a test operation completes in too short time, Bonnie++ does
not provide any result because it may give inaccurate result.
For precise measurement, we need to increase the amount of
read operation in the measurement procedure so that we can

0KB/s

300KB/s

600KB/s

900KB/s

1200KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 1

0KB/s

300KB/s

600KB/s

900KB/s

1200KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 10

0KB/s

300KB/s

600KB/s

900KB/s

1200KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 20

0KB/s

300KB/s

600KB/s

900KB/s

1200KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 44

(a) Character write

0KB/s

7500KB/s

15000KB/s

22500KB/s

30000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 1

0KB/s

7500KB/s

15000KB/s

22500KB/s

30000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 10

0KB/s

7500KB/s

15000KB/s

22500KB/s

30000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 20

0KB/s

7500KB/s

15000KB/s

22500KB/s

30000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 44

(b) Block write

Fig. 4. Write throughput

0KB/s

1750KB/s

3500KB/s

5250KB/s

7000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 1

0KB/s

1750KB/s

3500KB/s

5250KB/s

7000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 10

0KB/s

1750KB/s

3500KB/s

5250KB/s

7000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 20

0KB/s

1750KB/s

3500KB/s

5250KB/s

7000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 44

(a) Character read

0KB/s

375000KB/s

750000KB/s

1125000KB/s

1500000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 1

0KB/s

375000KB/s

750000KB/s

1125000KB/s

1500000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 10

0KB/s

375000KB/s

750000KB/s

1125000KB/s

1500000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 20

0KB/s

375000KB/s

750000KB/s

1125000KB/s

1500000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Parallel 44

(b) Block read

Fig. 5. Read throughput

get reasonable operation time to calculate trustable value of
read throughput.

In block read operations (Fig. 5(b)), GlusterFS and
XtreemFS give almost similar performance and they are quite
better than Ceph and Sheepdog. In the Parallel-1 case, Glus-
terFS performs around 8 times and 18 times better than Ceph
and Sheepdog respectively. In the Parallel-44 case, GlusterFS
performs around 165 times and 48 times better than Ceph and
Sheepdog respectively.

We can also observe the number of running virtual machines
in parallel affects the performance in Ceph and Sheepdog
cases. GlusterFS and XtreemFS seem to be more robust in
parallel operations.

C. Throughput with Latency

Fig. 6 shows the impact of network latency. In each chart in
Fig. 6, the left hand side chart shows the result with no latency,
and the right hand side chart (with the gray background) shows
the result with 20ms latency as described in section V.

Different from the previous figures, the bars in Fig. 6 show
the average throughput of multiple virtual machines. The blue,
green, yellow, and red bars indicate the average throughput of
the Parallel-1, Parallel-10, Parallel-20, and Parallel-44 cases.

We can observe that in both read and write operation cases,
network latency affects the performance of the operations
significantly, except for the read operations of GlusterFS and
XtreemFS. Their read throughput did not show big degradation
even though there was 20ms network latency.

D. Scalability

We can also observe that scalability of GlusterFS and
XtreemFS is better than that of Ceph and Sheepdog from
Fig. 6. When the number of virtual machines running in
parallel increases, Ceph and Sheepdog tend to show perfor-
mance degradation, while GlusterFS and XtreemFS can keep
almost same performance regardless of the number of virtual
machines.

20ms delay

0KB/s

300KB/s

600KB/s

900KB/s

1200KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Wr Char

0KB/s

300KB/s

600KB/s

900KB/s

1200KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Wr Char

Parallel-1 Parallel-10

Parallel-20 Parallel-44

(a) Character write

20ms delay

0KB/s

7500KB/s

15000KB/s

22500KB/s

30000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Wr Block

500KB/s

7875KB/s

15250KB/s

22625KB/s

30000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Wr Block

(b) Block write

0KB/s

1750KB/s

3500KB/s

5250KB/s

7000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Rd Char 20ms delay

0KB/s

1750KB/s

3500KB/s

5250KB/s

7000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Rd Char

(c) Character read

0KB/s

281250KB/s

562500KB/s

843750KB/s

1125000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Rd Block

0KB/s

281250KB/s

562500KB/s

843750KB/s

1125000KB/s

 Ceph Sheepdog GlusterFS XtreemeFS

Rd Block 20ms delay

(d) Block read

Fig. 6. Impact of latency and impact of the number of virtual machines

VII. DISCUSSION

We observed Ceph and Sheepdog provided good perfor-
mance in character write operations. Although the difference
was not so big actually. The performance of Ceph was around
122% of that of GlusterFS. Sheepdog was almost the same.

Interestingly, the performance of block write operations of
Ceph was better than others when we ran only one virtual
machine in the entire system, however, when we ran multiple
virtual machines, the performance went worst. This result
means that the concurrent access to Ceph OSDs have some
bottleneck. Technically, the mechanism to provide virtual disk
in Ceph is similar to that of Sheepdog. We were initially
expecting Ceph and Sheepdog would show similar perfor-
mance trend, but they were different. In this measurement
experiment, we used the rbd method provided by QEMU to
serve virtual disks to virtual machines. That method is simply
using Ceph OSDs as distributed object stores, and is not using
the filesystem part of Ceph. If we used Ceph as a filesystem
as similar to GlusterFS and XtreemFS, the result might be
different.

For read operations, GlusterFS and XtreemFS provided
better performance in both character read and block read
operations. Especially in block read operations of the Parallel-
44 case, GlusterFS was 164 times better than Ceph, and 48
times better than Sheepdog. XtreemFS performed similarly.
The difference between these two groups was that we used
QEMU direct support functions for Ceph and Sheepdog (the
rbd method as described before, and the sheepdog method
respectively) to provide virtual disks to virtual machines,
while we used GlusterFS and XtreemFS through hypervisor’s
filesystem. We think the caching strategy of hypervisor’s
filesystem contributed the better read performance. As noted
before, Ceph can also be used as a filesystem. The performance
measurement when we use Ceph as a filesystem is one of our
future works.

0

0.75

1.50

2.25

3.00

 Ceph Sheepdog GlusterFS XtreemeFS

Wr Block Para Impact Ratio

Parallel-10
Parallel-20
Parallel-44

0

0.25

0.50

0.75

1.00

 Ceph Sheepdog GlusterFS XtreemeFS

Rd Block Para Impact Ratio

0

0.275

0.550

0.825

1.100

 Ceph Sheepdog GlusterFS XtreemeFS

Rd Char Para Impact Ratio

0

0.325

0.650

0.975

1.300

 Ceph Sheepdog GlusterFS XtreemeFS

Wr Char Para Impact Ratio

Fig. 7. Parallelism impact ratio

Since we are targeting a wide are operation of virtual ma-
chines for geographically distributed datacenters, the impact
of latency, and the impact of the number of virtual machines
in operation in the system are important evaluation factors.

Fig. 7 shows the parallelism impact ratio calculated from
equation 1.

ParallelismImpactRatio =
ThroughputParallel−X

ThroughputParallel−1
(1)

Where ThroughputParallel−1 is average throughput of I/O
operations when we run only one virtual machine at one time.
ThroughputParallel−X is average throughput of I/O opera-
tions of the parallel case Parallel −X(X = 10, 20, or44).

In write operations, we can observe the trend that the
performance becomes worse as the number of virtual machines

0

0.25

0.50

0.75

1.00

 Ceph Sheepdog GlusterFS XtreemeFS

Rd Block Latency Impact Ratio

Parallel-1
Parallel-10
Parallel-20
Parallel-44

0

0.25

0.50

0.75

1.00

 Ceph Sheepdog GlusterFS XtreemeFS

Wr Char Latency Impact Ratio

0

0.225

0.450

0.675

0.900

 Ceph Sheepdog GlusterFS XtreemeFS

Wr Block Latency Impact Ratio

0

0.3

0.6

0.9

1.2

 Ceph Sheepdog GlusterFS XtreemeFS

Rd Char Latency Impact Ratio

Fig. 8. Latency impact ratio

increases. In read operations, Ceph and Sheepdog have the
similar trend, however, GlusterFS and XtreemFS does not have
any impact of parallelism.

Fig. 8 shows the latency impact ratio calculated from
equation 2.

LatencyImpactRatio =
ThroughputDelay20

ThroughputDelay0
(2)

Where ThroughputDelay0 is average throughput measured
in the base topology without any latency configuration,
ThroughputDelay20 is average throughput measured in the
topology with the latency configuration as shown in Fig. 3.

We can observe that GlusterFS is the most robust system
against network latency than others. XtreemFS is also good,
however, we can see notable throughput degradation in block
write operations performed by multiple virtual machines in
parallel.

The performance degradation of Sheepdog is most signifi-
cant when there is a latency in a network.

In block read/write operations of Ceph and Sheepdog, the
ratio goes better when the number of parallel virtual machines
increases. This means that the impact of network latency
becomes smaller and smaller when we have more number
of virtual machines. It seems that XtreemFS is also showing
similar trend, however, we think we need more data to say so.

For character read/write operations, we cannot see such
trend as that of block operations. It seems that the impact
of latency is constant in most cases. Only the character read
operations of Sheepdog is showing increasing throughput as
the number of virtual machine goes up, however, we think we
need more data to be confident.

One another important evaluation factor which is not in-
vestigated this time is the data transfer efficiency. When we
perform a certain amount of read or write operations, we
need to measure how much amount of background traffic is

required on each distributed file/storage system. The smaller
background traffic is better. This is our future task.

VIII. CONCLUSION

The virtualization technology enabled us to operate more
number of computers to host real services. One of the merit of
virtualization is that it makes it easy to move virtual resources
among physical machines. To achieve more efficient operation
of datacenters, we need to provide the mechanism to migrate
virtual resources among datacenters to aggregate them to fewer
physical machines. To do that, distributed file/storage system
which can be operated in a wide area network is required.

In this paper, we picked Ceph, Sheepdog, GlusterFS, and
XtreemFS and evaluated them as a backend storage system for
virtual machines. The evaluation result shows that GlusterFS
and XtreemFS provide far better read performance (we ob-
served 164 times better performance at maximum). Sheepdog
provides better block write performance.

We defined two new storage evaluation indexes for a virtual-
ization environment; ParallelismImpactRatio and LatencyIm-
pactRatio. From these indexes, we observed that the number
of virtual machines running in parallel does matter for all the
systems. When the number grows, the throughput goes down,
however, for block read operations, GlusterFS and XtreemFS
are not affected by this factor. The latency impact exists,
however, we observed the trend that when we increase the
number of virtual machines, the impact is going to small.

From what we have achieved from the experiment, our cur-
rent suggestion of the distributed file/storage system for virtual
machine image storage is GlusterFS or XtreemFS. We still
need to evaluate more factors, such as data transfer efficiency,
which is important especially in a wide area operation. We
will keep investigating the distributed file/storage systems to
build better wide area virtualization environment.

ACKNOWLEDGMENTS

We would like to thank Toshiyuki Miyachi and Hiroshi
Nakai for their support at StarBED and many useful sugges-
tions and comments. We also thank all the staffs at StarBED
for helping our experiment.

REFERENCES

[1] E. Harney, S. Goasguen, J. Martin, M. Murphy, and M. Westall, “The
efficacy of live virtual migrations over the internet,” in Proceedings
of the 2nd international workshop on Virtualization technology in
distributed computing (VTDC’07), 2007.

[2] Cisco Systems, Inc., VMware, Inc., “Virtual Machine Mobility with
Vmware VMotion and Cisco Data Center Interconnect Technologies,”
Cisco Systems, Inc., VMware, Inc., Tech. Rep., 2009.

[3] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and S. Sekiguchi, “A
Live Storage Migration Mechanism over WAN for Relocatable Vir-
tual Machine Services on Clouds,” in Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGRID’09), 2009, pp. 460–465.

[4] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-Performance Distributed File System,” in
Proceedings of the 7th symposium on Operating systems design and
implementation (OSDI’06). USENIX, 2006, pp. 307–320.

[5] K. Morita, “Sheepdog: Distributed Storage System for QEMU/KVM,”
Linux.conf.au 2010, January 2010.

[6] Gluster Inc., “Gluster File System Architecture,” Gluster Inc., Tech.
Rep., 2010.

[7] E. Cesario, T. Cortes, E. Focht, M. Hess, F. Hupfeld, B. Kolbeck,
J. Malo, J. Martı́, and J. Stender, “The XtreemFS Architecture,” in Linux
Tag, 2007.

[8] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
Proceedings of the annual conference on USENIX Annual Technical
Conference (ATEC’05), April 2005, pp. 41–41.

[9] ——, “QEMU: Open Source Processor Emulator,”
http://www.qemu.org/.

[10] R. Harper, A. Aliguori, and M. Day, “KVM: The Linux Virtual Machine
Monitor,” in Proceedings of the Linux Symposium, 2007, pp. 225–230.

[11] ——, “KVM: Kernel-based Virtual Machine,” http://www.linux-
kvm.org/.

[12] Inktank Storage, Inc., “Ceph,” http://ceph.com/.
[13] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, “RADOS: A

Scalable, Reliable Storage Service for Petabyte-scale Storage Clusters,”
in Proceedings of the 2th international Petascale Data Storage Workshop
(PDSW’07), November 2007, pp. 35–44.

[14] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH:
Controlled, Scalable, Decentralized Placement of Replicated Data,” in
Proceedings of the 2006 ACM/IEEE conference on Supercomputing
(SC’06), November 2006.

[15] R. Honicky and E. L. Miller, “Replication under scalable hashing: A
family of algorithm for scalable decentralized data distribution,” in
Proceedings of the 18th International Parallel & Distributed Processing
Symposium (IPDPS 2004), April 2004.

[16] K. Morita, “Sheepdog,” http://www.osrg.net/sheepdog/.
[17] S. Dake et al., “Corosync,” http://www.corosync.org/.
[18] The Apache Software Foundation, “Apache ZooKeeper,”

http://zookeeper.apache.org/.
[19] Gluster Inc., “Gluster,” http://www.gluster.org/.
[20] The Contrail E.U. project, The MoSGrid project, and The First We Take

Berlin, “XtreemFS,” http://www.xtreemfs.org/.
[21] T. Miyachi, K. Chinen, and Y. Shinoda, “StarBED and SpringOS:

large-scale general purpose network testbed and supporting software,”
in Proceedings of the 1st international conference on Performance
evaluation methodolgies and tools (valuetools’06), October 2006.

[22] M. Szeredi, “FUSE: Filesystem in Userspace,”
http://fuse.sourceforge.net/.

[23] R. Coker, “Bonie++,” http://www.coker.com.au/bonnie++/.

