
UKAI: Centrally Controllable
Distributed Local Storage

for Virtual Machine Disk Images
Keiichi Shima

Research Laboratory, IIJ Innovation Institute Inc.
Chiyoda-ku Tokyo, Japan 101-0051

Email: keiichi@iijlab.net

Abstract—In this paper, we introduce a new distributed storage
system for virtual machine disk images. A key concept of this
storage system is that an operator has full control over which
distributed storage nodes are used to keep a disk image. Unlike
many other existing distributed file/storage systems, the proposed
system does not automatically decide the location of distributed
objects. This is important, especially when virtual machine infras-
tructure is deployed over many different geographical locations.
Virtual machines are sometimes moved across hypervisors due
to resource constraints or maintenance operations. When moving
virtual machines, how efficiently the virtual machines communi-
cate with their storage images is a serious issue. By acquiring full
control of disk image placement, an operator can move related
disk images to a nearer location. We present the design of the
proposed system and provide performance measurements for our
prototype implementation. The preliminary results show that the
prototype code performs as well or better than existing virtual
disk image serving methods under realistic operating conditions.

I. INTRODUCTION

Virtual machine operation has become one of the core
tasks of successful service providers. One problem still to
be solved in this area is that of resource migration. For
instance, it is sometimes necessary to perform actions such
as move a virtual machine from one hypervisor to another in
order to decrease the load of the origin hypervisor, upgrade
a hypervisor operating system, move virtual machines to a
newly built datacenter, or discontinue an existing datacenter.
A virtual machine basically consists of three parts: i) CPU and
memory resources, ii) a network resource, and iii) a storage
resource. To keep a virtual machine running after migration, an
operator must transparently supply the above three resources
to the virtual machine. For i), the recent major virtualization
technologies [1]–[5] already have the ability to migrate CPU
and memory resources. For ii), recent progress in software
defined networking technology means that is now a candidate
solution for network resource migration [6]. For iii), there are
a few technologies to support storage migration [7]–[9].

This paper focuses on the storage resource migration issue.
We believe the following three requirements are important
when operating a virtual machine storage backend.

Req.1 Controllablity: to provide the ability to store a disk
image to a specific location for each virtual machine

Req.2 Availability: to provide a flexible level of redundancy
to avoid data loss

Req.3 Locality: to place a disk image as near its owner
virtual machine as possible to increase performance
and robustness against network failures

Based on the above requirements, we have designed a new
storage system that serves virtual machine disk images to
hypervisors. The proposed system offers full control over the
storage location of disk image data for each virtual machine.
An operator can assign multiple locations for the same disk
image to increase redundancy and can even specify location
information on a portion of a disk image to protect important
parts.

The location specification can be added or removed at
any time. When a virtual machine moves from one location
to another, an operator can add local locations, migrate the
existing data to local locations without disrupting machine op-
erations, and remove remote locations after migration. Unlike
autonomously distributed file/storage systems, an operator can
specify storage location. This is important because network
services usually consist of multiple virtual machine instances.
How storage access is optimized for one machine may affect
the collaborative operational performance of the set of virtual
machines.

As might be anticipated, providing full location control
could lead to a lot of configuration tasks when the number of
virtual disks is large. In our proposal, we do not consider the
automated support of location control; however, it is possible
to design a super-layer for storage management policy. This
higher-layer module may provide automatic location determi-
nation functions. To do that, the lower-layer module must have
detailed location management functions. This proposal aims to
provide the basis for more intelligent management systems in
future.

II. RELATED WORK

The most basic technique of storage migration is incre-
mental block migration. In this mechanism, the entire storage
image is moved from the source to the destination location. A
simple method was proposed in [7] that moves disk image
blocks from head to tail after a virtual machine has been
moved to a destination location. If the virtual machine tries

Globecom 2013 Workshop - Cloud Computing Systems, Networks, and Applications

978-1-4799-2851-4/13/$31.00 ©2013IEEE 432

to access a not-yet moved block, then an on-demand copy
is initiated. These mechanisms satisfy requirements 1 and 3.
However, since the disk image is stored at single location,
requirement 2 is not achieved.

To achieve redundancy, a distributed filesystem is sometimes
used. Distributed Replicated Block Device (DRBD) [10] pro-
vides a block device, replicated over a network. Since DRBD
is a type of mirrored disk, the operations for disk management
are similar to those of local disk mirroring operations. In this
sense, requirement 1 is satisfied; however, it is not possible to
use this system for each virtual machine. DRBD also partially
satisfies requirement 2 as it can have up to two replicated disks
in a basic configuration. When more than two replicas are
needed, a cascading configuration is required. For requirement
3, DRBD allows a dual primary operation mode that enables
concurrent access to both mirrored volumes. In this sense, data
locality can be achieved. However, it is difficult to change
the mirroring volume from a remote site to a local site. Even
though a user can access the local mirrored volume, the remote
mirrored volume is still located remotely. The reconfiguration
operations in DRBD are less flexible.

There are other distributed filesystems such as Ceph [11]
or GlusterFS [12]. There is also a distributed block storage
mechanism called Sheepdog [13] that is a special block device
designed for virtual machine disk images. These distributed
systems use a consistent hash mechanism to determine the
locations for data distribution. An operator cannot control
which part of a disk image is stored on which storage node.
This is problematic when an operator wants to move a virtual
machine to a distant location. If a storage cluster is configured
locally near the origin hypervisor, the migrated virtual machine
will suffer from poor disk performance because of the long
network delay. If the storage cluster is deployed over a
wide area network, the daily disk operation performance will
worsen. Hence, these systems only satisfy requirement 2.

III. THE UKAI SYSTEM

In this section, we discuss the design of the UKAI system1,
a centrally controllable distributed local storage system.

A. Constraints and Advantages

When designing a new storage system that satisfies the
requirements defined in Section I, we must first clarify the
constraints of a virtual machine operation mechanism. We
believe the operational environment of a virtual machine is
unique, as a storage interface is not always required to provide
a fully functional distributed filesystem. The constraints are
given below.

Con.1 No concurrency: there is only one entity for access-
ing a specific disk image at one time.

Con.2 Limited metadata elements: the metadata information
of a disk image is limited.

Since we are designing a storage system for virtual machine
disk images, we can assume the disk images will only be used

1UKAI is named after a traditional Japanese fishing method that uses
cormorants (http://en.wikipedia.org/wiki/Cormorant fishing).

by hypervisors and virtual machines. Considering that a disk
image is associated with a specific virtual machine, it is not
necessary to allow concurrent access to a specific disk image
from multiple entities. This means that it is not necessary to
design a distributed resource locking mechanism.

A disk image is seen as a block device from a virtual
machine’s point of view. Creation, access, or modification
times are not meaningful in such an environment. The size
of a disk image is also meaningless, as it does not usually
change. Based on these constraints, a UKAI storage can be
implemented with only simple data I/O interfaces.

B. Disk Image Design

In the UKAI system, a disk image is divided into small
blocks. Each block has its own location record. If redundancy
is required, a block may have multiple location records. A
block is the unit of a synchronization operation, and its
location record contains a flag that indicates if the block at
that location is in-sync or out-of-sync. If the disk image does
not have redundancy, then all the locations must be in-sync.
Having an out-of-sync location means that the disk image is
broken, if a block has only one location record. If there are
multiple locations, the operational requirement is to have at
least one in-sync location. When reading data from a block,
one of the in-sync locations is chosen for data retrieval. When
writing, data is transferred to all locations and written to a
local storage device at that location. If a location is in the out-
of-sync state, data from one of the in-sync blocks is transferred
to the out-of-sync location. Once the data transfer completes,
the state is changed to in-sync. Fig. 1 shows the concept of
the UKAI disk image structure.

In the figure, a disk image is divided into four blocks. Each
block has two location records, some of which are flagged as
out-of-sync. Data is read from the node indicated by the white
location information box. When writing, for example, to block
3, the data stored in node B is copied to node A before any
data is written. Then the location of node A is changed to an
in-sync state and the actual data is written to both locations.

C. Metadata Design

Metadata information for a virtual disk is stored in the
hypervisor on which the virtual machine using that disk is run.
It consists of the size and name of the disk image, the size of
the block, and location information of each block. The size and
name are used as a filename when the disk image is exposed
as a file through a filesystem or as a block device name of a
hypervisor, depending on how the system is implemented. The
block size and location records are used in the UKAI system
internally.

D. Error Handling

When operating a distributed system, an error is not an
option. For example, when reading data from one of the nodes
defined in the location record, it may not be available because
of node failure, network failure, or some other reason. In
that case, the UKAI system records the node address in the

Globecom 2013 Workshop - Cloud Computing Systems, Networks, and Applications

433

Block 0 Block 0

Block 1

Block 2

node A
synced: yes

node B
synced: yes

node A
synced: yes

node B
synced: no

node A
synced: yes

node B
synced: no

node A
synced: no

node B
synced: yes

Disk Image Location Information

Block 3

Pointers
to block

Fig. 1. The concept of the UKAI disk image structure consisting of four
blocks and two location records

locally managed failure node list. When accessing a block, the
UKAI system first checks the failure node list. If the node is
listed in when the UKAI system is writing data, the location
information is marked as out-of-sync. The data is written to
all the other nodes listed in the location record list. When
reading, the UKAI system looks for another candidate from
the list of locations of the block being accessed. If there is no
in-sync candidate, the situation is considered a fatal error.

The failure node list has a time limit for each entry. When
this limit expires, access to the node may be resumed. If the
node recovers before the time limit expires, then the data
synchronizing process will be initiated when a write operation
occurs on blocks marked as out-of-sync.

E. Control

The following control operations are defined for the mini-
mum operation of the UKAI system.

Add image: adds a new virtual disk image to the UKAI
system. An image must be added before being used as a disk
image by a virtual machine.
Remove image: removes an existing virtual disk image from
the UKAI system. Before removing a disk image, the virtual
machine that uses the target disk image must be powered off.
Add location: adds a location specification to a range of
blocks.
Remove location: removes a location specification from a
range of blocks. When removing a location, the system must
ensure that at least one in-sync location is left for each block.

{
"name": "disk01",
"size": 200000000,
"block_size": 50000000,
"blocks": [{

"192.0.2.100": {"synced": true},
"192.0.2.101": {"synced": true}

},{
"192.0.2.100": {"synced": true},
"192.0.2.101": {"synced": false}

},{
"192.0.2.100": {"synced": true},
"192.0.2.101": {"synced": false}

},{
"192.0.2.100": {"synced": false},
"192.0.2.101": {"synced": true}

}]
}

Fig. 2. The metadata structure that represents the disk image shown in Fig.
1, where the size of the image is set to 200 MB, the size of each block is
set to 50 MB, and the addresses of nodes A and B are set to 192.0.2.100 and
192.0.2.101, respectively

Otherwise, the data of the disk will be lost and a fatal error
will occur.
Get metadata: returns the metadata information of a specific
disk image containing the name of the image, the size of the
image, the block size of the image, and the list of locations
for all the blocks.
Synchronize: synchronizes a range of blocks between nodes
defined in the location records of the specified blocks.

Other operations may be defined in future UKAI systems.

IV. IMPLEMENTATION

We have implemented the concepts of the UKAI system in
a prototype using FUSE [14] and Python. Each disk image
is exposed through the FUSE mechanism as a file. We used
QEMU as a hypervisor since it has the ability to use a file as
a virtual disk image. Any other hypervisors can also be used
if they can use a file as a virtual disk image. Note that there
is no limitation on how to implement the UKAI system. An
implementation as a filesystem interface is just one example.
It could also be implemented in a special block driver form
for QEMU or other virtualization systems.

The prototype code is available at the GitHub repository2.

A. Metadata Handling

Fig. 2 shows the metadata structure for the example disk
image shown in Fig. 1. The data is structured using a JSON
[15] format. The name of the disk image is disk01 and this
name is used as a file name under the FUSE mount point of
the UKAI system. The size of this disk image is defined to be
200 MB. Since the block size is 50 MB, the total number of
blocks will be four blocks.

The metadata file for a virtual disk is stored in the hyper-
visor that runs its virtual machine. When a virtual machine

2https://github.com/keiichishima/ukai/

Globecom 2013 Workshop - Cloud Computing Systems, Networks, and Applications

434

is migrated to another hypervisor, the related metadata must
be accessible from the destination hypervisor. This can be
achieved in several ways. One method is to copy the entire
metadata file at the last moment when the virtual machine state
is migrated to the destination. Since the size of a metadata
file is small compared to memory or storage data, copying
a metadata file does not affect migration performance. The
other method is to use some kind of distributed filesystem,
such as GlusterFS, to share metadata files. In the latter case,
it is necessary to operate a wide-area distributed filesystem;
however, the update of metadata information occurs only when
the synchronization status changes, so its influence is small.
In the test operations discussed in Section V, we simply share
metadata files using NFS. For performance reasons, we plan
to integrate the former metadata transition method in the final
form of the implementation.

B. FUSE Interface

To implement a FUSE interface in Python, we utilized
fusepy3, a FUSE-Python binding library. As we have dis-
cussed in Section III-A, not all the filesystem interfaces must
be implemented. In the prototype implementation, only the
interfaces shown in TABLE I are implemented.

Other filesystem interfaces are either not implemented (such
that the call falls back to the default behavior of fusepy), or
do nothing.

C. Remote Read/Write Operations

In some cases, read or write operations may require access
to a remote UKAI node. This is implemented using the XML-
RPC mechanism. As we discussed in Section III-A, we do not
need to take care of conflicting accesses to a disk image since
only one virtual machine accesses a specific disk image at one
time. When receiving read/write requests from a remote node,
the UKAI storage node just performs read or write operations
on the local disk without any exclusive control because it is
certain that there is no other entities accessing the disk.

D. Control Operation

Control operations described in Section III-E are also imple-
mented using the XML-RPC mechanism. The RPC interface
is open to a local node. An operator can issue management
commands such as adding an image or location through this
interface.

V. PERFORMANCE MEASUREMENT

We measured the I/O bandwidth with our prototype imple-
mentation. We prepared three 8 GB UKAI disk images with
different block size values (5 MB, 10 MB, and 20 MB) and
three different locations as shown in TABLE II.

For comparison, a disk image was created on local storage
as a single file, and a disk image served by NFS was also
prepared.

Two physical machines connected with a 1 Gbps Ethernet
switch were prepared and configured as hypervisors and UKAI

3https://github.com/terencehonles/fusepy/

TABLE II
CONFIGURATION OF LOCATION INFORMATION OF THREE UKAI DISK

IMAGES

Location type Configuration detail
Local A virtual machine and its disk image are located

on the same node.
Remote A virtual machine and its disk image are located

on different nodes.
Mirror A disk image has two locations: one is on the

same node as the virtual machine and the other
is on a different node.

TABLE III
SPECIFICATIONS OF THE MEASUREMENT EQUIPMENTS

Nodes
Product ID EPSON Endeavor AT971
CPU Intel R⃝ CoreTM2 Duo E8400 3.00 GHz
Memory 4 GB
HDD 250 GB SATA
NIC Intel R⃝ PRO/1000 Gigabit Network Adapter
Switch
Product ID Corega CG-SW05GTLXW

1Gbps Ethernet Switch

Node 2Node 1

Local
disk

UKAI
disk

Virtual
Machine

(File)

Virtual
Machine

(UKAI Local)

Virtual
Machine

(UKAI Remote)

Virtual
Machine

(UKAI Mirror)

Virtual
Machine

(NFS)

UKAI
server

UKAI
server

UKAI

UKAI
disk

NFS
server

UKAI

NFS
client

Synchro-
nized

Fig. 3. System diagram of the performance measurement system

nodes. These nodes were located in the same network segment.
One of the nodes was also configured as a NFS server for
the NFS disk image mentioned above. TABLE III shows the
specifications of the equipments.

The virtual machines used for the measurement ran Ubuntu
12.04 LTS with 512 MB memory.

Fig. 3 shows the system diagram of the measurement sys-
tem. There were five different virtual machine configurations,
each using a different disk image configuration. The three that
used UKAI disk images also had three different block size
configurations as described earlier. TABLE IV shows all the
combination cases of the disks and virtual machines used in
the measurement.

We used the fio4 measurement tool. The configuration
parameters for fio are shown in TABLE V. Measurement oper-
ations were done one-by-one for each virtual machine. While
one virtual machine was running, the other four machines

4http://freecode.com/projects/fio

Globecom 2013 Workshop - Cloud Computing Systems, Networks, and Applications

435

TABLE I
FUSE INTERFACES MANDATORY FOR THE UKAI SYSTEM

Interface Action
init() Initializes the UKAI system. The function launches two threads, one for receiving read/write operation requests from remote UKAI

nodes as described in Section IV-C and the other for receiving control commands as described in Section IV-D.
getattr() Returns a stat structure of a disk image file. The total image size is the only meaningful information.
open() Returns a file descriptor of the specified disk image.
readdir() Returns a list of disk image file names. To conform to the normal filesystem readdir() operation, the current and parent directories

of the UKAI mount point are also returned.
read() Reads data from a virtual disk and returns it to the caller. One read operation may contact multiple blocks depending on the specified

read size and offset value.
write() Writes data to a virtual disk. Just as for the read operation, multiple blocks may be accessed depending on the specified write size

and offset. The write operation may initiate a synchronization operation if the blocks to be accessed have location information with an
out-of-sync status.

TABLE IV
MAPPING TABLE OF VIRTUAL DISK LOCATION TYPES, VIRTUAL DISK

CONFIGURATION TYPES, AND THEIR OWNER VIRTUAL MACHINES

Location type Virtual disk type Owner virtual machine

Local

Local file Local
UKAI 5 MB BS

UKAI LocalUKAI 10 MB BS
UKAI 20 MB BS

Remote

NFS file NFS
UKAI 5 MB BS

UKAI RemoteUKAI 10 MB BS
UKAI 20 MB BS

Mirror
UKAI 5 MB BS

UKAI MirrorUKAI 10 MB BS
UKAI 20 MB BS

TABLE V
CONFIGURATION PARAMETERS OF THE FIO COMMAND

I/O pattern Random read and random write
I/O file size 128 MB, 256 MB, 512 MB, and 1 GB
I/O block size 4 KB
I/O API Use standard read() and write() sys-

tem calls and fseek() library call

were shut down. As shown in TABLE V, four different file
sizes, 128 MB, 256 MB, 512 MB, and 1 GB were used in the
experiment to compare the effect of files size on performance
variation.

A. Local Storage

Fig. 4 shows the results for local storage cases. The graph
shows four different types of local disk: the first three are
UKAI images with different block sizes and the fourth is a
local file disk image.

In the random read case, we see unstable behavior for UKAI
disks of 5 MB and 10 MB block sizes in the 1 GB file test
case. However, the overall performance is not worse than that
of the local file storage method. For the random write case,
the UKAI disks often achieved better bandwidth than the local
file storage method.

B. Remote Storage

Fig. 5 shows the results for remote location cases. In this
case, we used a NFS mounted disk image for comparison
instead of a local file disk image.

0

750

1500

2250

3000

128M 256M 512M 1G

Random write (Local)

File size

0

20000

40000

60000

80000

128M 256M 512M 1G

Random read (Local)

Ba
nd

wi
dt

h
(K

B/
s)

File size

5MB BS
10MB BS
20MB BS
Local file

Fig. 4. Comparison of I/O bandwidth of local disk images

0

17500

35000

52500

70000

128M 256M 512M 1G

Random read (Remote)

Ba
nd

wi
dt

h
(K

B/
s)

File size

0

250

500

750

1000

128M 256M 512M 1G

Random write (Remote)

File size

5MB BS
10MB BS
20MB BS
NFS

Fig. 5. Comparison of I/O bandwidth of remote disk images

In the remote location cases, the UKAI disks achieved better
performance in both the random read and random write cases.
However, we observed unstable behavior when reading, just
as for the local case.

C. Mirrored Storage

Fig. 6 shows the results for three mirrored (one on local
and the other on remote) UKAI disk images. For comparison,
a local file disk image result is shown for the random read
case and a NFS disk image result is shown for the random
write case. Since the prototype UKAI implementation prefers
reading from a local node whenever available, it is natural to
compare it to a local file when reading. For writing, the UKAI
filesystem has to write to both locations. Since a network write

Globecom 2013 Workshop - Cloud Computing Systems, Networks, and Applications

436

0

200

400

600

800

128M 256M 512M 1G

Random write (Mirror)

File size

0

20000

40000

60000

80000

128M 256M 512M 1G

Random read (Mirror)
Ba

nd
wi

dt
h

(K
B/

s)

File size

5MB
10MB
20MB
Local

5MB BS
10MB BS
20MB BS
NFS

Fig. 6. Comparison of I/O bandwidth of mirrored UKAI disk images and
other images

operation always happens in this case, a NFS disk is used for
comparison.

For reading, the UKAI performance should be similar to
that of a local disk because data is read from the local side
of a disk in the local-remote mirror case. However, for the
512 MB and 1 GB file size cases, the actual performance was
worse than expected. For write operations, even though UKAI
writes to two locations, the performance was better than that
of NFS.

D. Measurement Summary

The results show that performance degrades when the size
of a test file is increased. There were some cases where the
performance of the UKAI disk was much worse than expected,
for example, for random reads in the local storage and mirrored
cases. On the contrary, for all the random write cases, its
performance was better than local file and NFS storage.

The block size configuration of UKAI storage does not
have a serious impact on the overall read/write performance;
however, we do not recommend using a large block size
because it will impact synchronization performance. If a block
size is large, the possibility of accessing a block that is
being synchronized increases. Such access results in device-
level disk I/O blocking and will cause serious performance
degradation at the virtual machine operation level.

VI. DISCUSSION

We have not identified the reason for the variation in the
UKAI storage system performance that we observed in the
previous section. Our current hypothesis is that the load of
other user-space programs might affect its performance be-
cause the UKAI system is implemented in user space. Another
hypothesis is that the variation is caused by the nature of a
layered filesystem. A virtual machine has its own filesystem
and buffering mechanism. Its disk device is in reality provided
by a hypervisor and is built on top of FUSE and hypervisor
files, both of which also have buffering mechanisms. Because
of these layered mechanisms, it is difficult to gain the control
needed to optimize the I/O operations of a virtual machine.
Where or how to buffer I/O data is currently a vital topic in
virtual storage research [16]. We need to investigate the true

source of this behavior to achieve a more stable and predictable
performance.

We initially thought that using a smaller block size would
increase access overhead, especially when operating with
large size files. However, it seems that block size did not
significantly influence read/write operations. The analysis of
its impact on synchronization operations and the determination
of the best block size during synchronization are future issues
we plan to address.

It was surprising that the random write performance was
better than for the local file and NFS storage cases, considering
that the current UKAI is implemented in user space in Python
and FUSE. We think this is because the filesystem buffering
mechanism works efficiently for random write operations on
the UKAI disk image blocks that have a much smaller file size
compared to the disk image file used by local file and NFS
storage. We have not yet measured the amount of resources
consumed for UKAI I/O operations when handling a large
number of block files, but this may have to be investigated in
order to understand the overhead of the UKAI system.

One negative observation not mentioned in the previous
section is that we found particularly poor sequential write
performance in every case (Fig. 7). This is probably because
the UKAI system uses small files to build a disk image.
Buffering may not work efficiently in a sequential write
operation that spreads over many small files.

VII. CONCLUSION

Flexible virtual machine location and/or relocation is a key
function for efficient virtual machine resource management.
Research on storage management mechanisms for virtual
machine image storage is vitally needed to enable relocatable
virtual machines. We defined three requirements necessary
for a distributed virtual machine image storage system: con-
trollability, redundancy, and locality and proposed the UKAI
system. We implemented the concepts of the UKAI system in a
prototype and achieved as good or better throughput compared
to existing virtual disk mechanisms in most of the random
read/write cases common to real-life operations. However, we
also found that in some cases, the performance was not stable.
We also found that sequential write performance was partic-
ularly poor. We continue to investigate the reason for these
behaviors and will improve the design and implementation of
the UKAI system to provide a better virtual machine image
storage mechanism.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
SOSP’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles. ACM, 2003, pp. 164–177.

[2] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
Proceedings of the annual conference on USENIX Annual Technical
Conference (ATEC’05), April 2005, pp. 41–41.

[3] R. Harper, A. Aliguori, and M. Day, “KVM: The Linux Virtual Machine
Monitor,” in Proceedings of the Linux Symposium, 2007, pp. 225–230.

[4] VMware, Inc., http://www.vmware.com/.

Globecom 2013 Workshop - Cloud Computing Systems, Networks, and Applications

437

0

15000

30000

45000

60000

128M 256M 512M 1G

Write (Mirror)

File size

0

15000

30000

45000

60000

128M 256M 512M 1G

Write (Remote)

File size

0

37500

75000

112500

150000

128M 256M 512M 1G

Write (Local)

Ba
nd

wi
dt

h
(K

B/
s)

File size

5MB BS
10MB BS
20MB BS
Local file

5MB BS
10MB BS
20MB BS
NFS

5MB BS
10MB BS
20MB BS
NFS

Fig. 7. Comparison of I/O bandwidth for sequential write operations over eleven different disk image configurations

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation (NSDI’05), vol. 2, 2005, pp. 273–286.

[6] J. Rexford, “Programming Languages for Programmable Network,” in
Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL’12), 2012, pp. 215–216.

[7] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and S. Sekiguchi, “A
Live Storage Migration Mechanism over WAN for Relocatable Vir-
tual Machine Services on Clouds,” in Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGRID’09), 2009, pp. 460–465.

[8] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live
Wide-Area Migration of Virtual Machines Including Local Persistent
State,” in Proceedings of the 3rd internatiolan conference on Virtual
execution environments, 2007, pp. 169–179.

[9] J. Zheng, T. S. E. Ng, and K. Sripanidkulchai, “Workload-Aware
Live Storage Migration for Clouds,” in Proceedings of the 7th ACM
SIGPLAN/SIGOPS international conference on Virtual execution envi-
ronments (VEE’11), 2011, pp. 133–144.

[10] L. Ellenberg, “DRBD R⃝ 9 & Device-Mapper Linux R⃝ Block Level
Storage Replication,” in Proceedings of Linux-Kongress 2008, October
2008.

[11] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-Performance Distributed File System,” in
Proceedings of the 7th symposium on Operating systems design and
implementation (OSDI’06). USENIX, 2006, pp. 307–320.

[12] Gluster Inc., “Gluster File System Architecture,” Gluster Inc., Tech.
Rep., 2010.

[13] K. Morita, “Sheepdog: Distributed Storage System for QEMU/KVM,”
Linux.conf.au 2010, January 2010.

[14] M. Szeredi, “FUSE: Filesystem in Userspace,”
http://fuse.sourceforge.net/.

[15] D. Crockford, The application/json Media Type for JavaScript Object
Notation (JSON), IETF, July 2006, rFC4627.

[16] V. Tarasov, D. Jain, D. Hildebrand, R. Tewari, G. Kuenning, and
E. Zadok, “Improving I/O Performance Using Virtual Disk Introspec-
tion,” in Proceedings of the 5th USENIX Workshop on Hot Topics in
Storage and File Systems, June 2013.

Globecom 2013 Workshop - Cloud Computing Systems, Networks, and Applications

438

