Hayabusa: Simple and Fast Full-Text Search Engine for Massive
System Log Data

Hiroshi Abe Keiichi Shima Yuji Sekiya
IIJ Innovation Institute, Japan IIJ Innovation Institute, Japan The University of Tokyo
abe@iij.ad.jp keiichi@iijlab.net sekiya@nc.u-tokyo.ac.jp

Japan Advanced Institute of Science
and Technology
h-abe@jaist.ac.jp

Daisuke Miyamoto Tomohiro Ishihara Kazuya Okada
The University of Tokyo The University of Tokyo The University of Tokyo
daisu-mi@nc.u-tokyo.ac.jp sho@c.u-tokyo.ac.jp okada@ecc.u-tokyo.ac.jp
ABSTRACT 1 INTRODUCTION

In this study, we introduce a simple and high-speed search en-
gine for large-scale system logs, called Hayabusa. Hayabusa uses
SQLite, standard lightweight database software with GNU Parallel
and general Linux commands, such that it can run efficiently with-
out complex components. Network administrators can use Hayabusa
to accumulate and store log information at high speeds and to
search the logs quickly.

In our experiments, Hayabusa required only 8 seconds to con-
vert 1.2 M log messages into a database file. Moreover, Hayabusa re-
quired only 5 seconds to search a keyword from 1.7 billion records.
Hayabusa achieved high-performance search speed in a stand-alone
environment without a complex distributed environment. Com-
pared with the distributed environment, Spark, the proposed stand-
alone Hayabusa was approximately 27 times faster.

CCS CONCEPTS

« Information systems — Distributed retrieval; Data struc-
tures; » General and reference — Performance; - Computer sys-
tems organization — Parallel architectures;

KEYWORDS
Data Processing, Parallel Processing, SQL, Parallel System

ACM Reference format:

Hiroshi Abe, Keiichi Shima, Yuji Sekiya, Daisuke Miyamoto, Tomohiro Ishi-
hara, and Kazuya Okada. 2017. Hayabusa: Simple and Fast Full-Text Search
Engine for Massive System Log Data. In Proceedings of CFI'17, Fukuoka,
Japan, June 14-16, 2017, 7 pages.

https://doi.org/10.1145/3095786.3095788

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CFI'17, June 14-16, 2017, Fukuoka, Japan

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5332-8/17/06...$15.00

https://doi.org/10.1145/3095786.3095788

Network administrators are responsible for providing stable net-
works for users. These administrators conduct multiple analyses
in their daily operations to efficiently detect system failures or net-
work attacks. Consequently, they collect various system data, in-
cluding raw packets, syslog messages, and sampled network flows
generated by multiple devices on the network.

When a system failure occurs on a network, the administrators
must detect the cause of the trouble as soon as possible. Of course,
it is better when cyber attacks against the network can be detected
before the attack leads to serious damage to the systems or user
devices. However, these analyses must handle large amounts and
various types of data. Further, data must be searched iteratively to
find the small target data related to the issue they are tracking.

The search time required to do so depends considerably on the
number of datasets and the data volume. Unfortunately, the num-
ber of devices that are potential sources of problems and the data
size are steadily increasing, owing to the rapid deployment of mul-
tiple middleboxes, such as next-generation firewalls, sandboxes,
and accelerators on networks. Moreover, the scale of monitored
networks can be very large in some cases. In data centers, facilities
often comprise tens of thousands of servers and network devices.
Additionally, virtualization technologies consolidate software in-
stances on a single physical device. These virtual devices also gen-
erate traffic and logs similar to physical devices. Administrators
cannot avoid this trend and can rarely reduce the data size of the
networks and servers. Therefore, a scalable and high-speed search
engine for the log data in network operations is desirable.

Unfortunately, dedicated log analysis systems for individual de-
vices or applications are unsuitable for log management. In some
cases, operators use Hadoop-type [1] cluster-based data storage
and search engines instead of expensive commercial products. Typ-
ically, however, these cluster-based systems lead to additional op-
erational costs for operators. Furthermore, many parameter con-
figurations and numerous tunings are needed to meet the required
performance. Even when administrators merely seek a high-speed
log search system for daily troubleshooting jobs, they end up man-
aging a complex distributed system by themselves, and this com-
plex system is itself prone to difficulties.

CFI’17, June 14-16, 2017, Fukuoka, Japan

In this study, we propose a simple and fast system, called Hayabusa,

to search for required information from a large amount and a wide
variety of log messages. Typically, when processing a large amount
of data, a large-scale distributed processing system is used, such as
Hadoop. However, we propose a stand-alone parallel processing
system based on SQL. The proposed system is a simple manage-

ment system, rather than a complicated distributed system. Hayabusa

provides a simple parallel processing mechanism suitable for search-
ing log messages. Administrators need only issue a simple SQL
sentence that is distributed to multiple CPU cores for parallel pro-
cessing to search log messages, and the results are merged using
the UNIX Pipe mechanism and UNIX commands.

This paper is organized as follows. Section 2 describe the related
works of this research. Section 3 introduces proposed system of
Hayabusa. Section 4 and 5 describe Hayabusa’s evaluation result
and discussion. Finally, Section 6 presents our conclusions and fu-
ture works.

2 RELATED WORK

The MapReduce[8] algorithm and Hadoop ecosystems (such as Apache

Spark[2]) are usually used as full-text search engines to analyze
system log messages. The big Hadoop and Spark clusters provide
users with fast processing speeds, insofar as the number of hosts is
increasing. However, managing Hadoop and Spark clusters is very
difficult for system administrators, because these approaches are
designed with complicated software. Administrators who merely

want simple search and count functions will find that Hadoop ecosys-

tems are too complex to use and manage.

Furthermore, distributed systems have storage problems[9]. HDFS[10]

is the storage component of the Hadoop ecosystem, and it is highly
reliable for data preservation, insofar as it adopts a file replication
system for multiple storage nodes. Elasticsearch[4] is another dis-
tributed data store. Elasticsearch can store data easily using the
REST API, and several hosts replicate the stored data. HDFS and
Elasticsearch achieve high reliability in terms of data preservation
by making multiple copies, but this mechanism leads to slow data
storage.

UNIX commands such as the Grep and Awk commands are of-
ten used for data search and analysis. However, if administrators
attempt to execute high-speed data processing, they need in-depth
knowledge of the data structure and the system environment (such
as memory, number of cores, and system cache files). Administra-
tors usually use the UNIX commands as a single process for simple
usage. However, the single processing flow is sequential, and this
does not usually achieve fast processing speeds.

3 PROPOSED SYSTEM
3.1 Architecture of Hayabusa

In this section, we show the design of the proposed system. The
system goals are to store a large amount of data and retrieve the
necessary data at high speeds using a simple approach.

H. Abe, K. Shima, Y. Sekiya, D. Miyamoto, T. Ishihara and K. Okada

Hayabusa

/[targetdir/yyyy/mm/dd/hh/

/var/log/

=R

Search
Engine

Store
Engine

SQLite DB Files(every 1 minute)

Simple Query
$ parallel sqlite3 ::: target files ::: "select count(*) from xxx where
logs match 'keyword';" | awk '{m+=$1} END{print m;}'

Figure 1: Architecture of Hayabusa

in a structured directory suitable for retrieval. The SearchEngine
runs multiple commands in parallel and aggregates the executed
results using the UNIX Pipe mechanism. The operation works as a
parallel processing mechanism without complex distributed com-
ponents.

3.2 Implementation of Hayabusa

In our implementation, we selected SQLite[6], which offers Full-
Text Search (FTS) capability as Hayabusa’s core function. The rea-
son for selecting SQLite is that we can achieve high-performance
full-text searches in a stand-alone environment without a complex
distributed environment. SQLite was used exclusively for the full-
text search engine. That is, we are not using SQLite as a usual re-
lational database in this proposal.

The SearchEngine runs multiple SQL commands in parallel us-
ing GNU Parallel[11] and aggregates the executed results using the
UNIX Pipe mechanism.

3.3 Design of the directory structure

If a user or a program requests data from a specified period, it is
necessary to pass the start time and the end time in the command
argument to the search application in the case of SQL. The more
users that add other conditions to pass to the SQL command exe-
cution, the slower the search time will be. In the case of log files, a
user or a program must find matching lines whose recorded times
are between the start time and the end time. With the proposed
method, the system stores data files in directory paths that are
based on the log times. A search program can simply specify the
search target time using that directory path.

More specifically, the directory path comprises the associated
time strings of the target log messages as shown below.

[/targetdir/yyyy/mm/dd/hh/min.db)

Advantage: By specifying a search time-range in “the directory
path + yyyy + mm + dd + hh + min.db", the search program can

Figure 1 shows Hayabusa’s architecture. The architecture of Hayabusa select the search time systematically.

is very simple. Hayabusa comprises two core parts: the StoreEngine,
and the SearchEngine. The StoreEngine reads a system log file gen-
erated with external programs such as rsyslogd, and converts the
log file into a database (DB) file. The converted DB files are placed

Disadvantage: Insofar as the StoreEngine generates a DB file
every minute, the number of DB files to be managed increases.
Moreover, when the SearchEngine executes a search operation, it
is impossible to find the data in the DB file that is currently being

O 0 NN U W N =

11
12
13
14
15
16

17

Hayabusa: Simple and Fast Full-Text Search Engine for Massive System Log Data

CFI’17, June 14-16, 2017, Fukuoka, Japan

import os.path
import sqlite3

'test.db'
"Im.log"’

db_file =
log_file =

if not os.path.exists(db_file):
conn = sqglite3.connect(db_file)
conn.execute ("CREATE VIRTUAL TABLE SYSLOG
USING FTS3(LOGS)");
conn.close()

conn = sqlite3.connect(db_file)

with open(log_file) as fh:

lines = [[line] for line in fh]
conn.executemany (' INSERT INTO SYSLOG VALUES(?
)', lines)

conn.commit ()

Figure 2: Insert code

used for data insertion. The search operation can only be done for
data recorded more than one minute beforehand.

3.4 Storing data at high speed

To store data at high speeds, the StoreEngine reads the log data
from the file and inserts the data by using a transaction mechanism
in SQLite. Because the StoreEngine has been designed to create a
data file every minute, it needs to read one minute of log messages
to generate a single DB file.

The actual insertion code is shown in Figure 2. This code per-
forms the following operations.

(1) Creation of an SQLite (FTS format) DB

(2) On-memory processing of the log messages using the Python
list-comprehension syntax

(3) Data insertion using the SQL transaction mechanism

First, the StoreEngine generates a DB file for SQLite in the form
of Full-Text Search 3 (FTS3). Then, the StoreEngine reads a log file
and stores each line in the lines array variable. The content of
the lines array variable is loaded into the memory. The values are
written to the DB file in FTS3 format by calling the executemany
database transaction method. The DB file is locked by the transac-
tion when the data is being inserted, and no other process can read
that DB file.

Advantage: The StoreEngine can read log files and insert a DB
file quickly by holding the file in memory. This is because a data
file is created every minute, and modern server equipment has an
enough memory to process one-minute data.

Disadvantage: Other processes cannot access the DB file until
the transaction completes. Accordingly, the SearchEngine cannot
search for messages stored in a DB file currently being used for
data insertion.

"select
"keyword ;"

$ parallel sqlite3s target files
count (x) from xxx where logs match
| awk '{m+=$1} END{print m;}'

Parallel Processing parallel + sqlite command
Aggregator pipe(|) + shell script(awk)

Figure 3: Simple Parallel Processing

3.5 Retrieving data at high speeds

The SearchEngine provides a simple parallel-processing function
to find data at high speeds. This simple function is based on parallel
SQLite command execution using GNU Parallel and the UNIX Pipe,
with the Awk command as an aggregator.

In the SearchEngine, a parallel processing code is expressed by
the combination of GNU Parallel and SQLite commands. The same
number of processes is generated as the number of files passed as
a command line argument to the GNU Parallel software. An ag-
gregate code receives the parallel processing results through the
UNIX Pipe and aggregates the data with the Awk command.

Advantage: Insofar as many processes are executed simultane-
ously, it is possible to core-scale them when they are executed on
a machine equipped with many core CPUs. If access to the SQLite
DB file is fast, it is feasible to collect the results within a small I/O
wait time.

Disadvantage: The load time for the disk I/O is high when the
disk speed is slow, because the SQLite command that accesses the
DB files is executed in parallel.

4 EVALUATION

In this section, we show the evaluation results for the proposed
system. We conducted benchmarks to reveal storage and search
performance with an original large-scale dataset.

Each time a measurement was performed in this experiment,
the Linux file cache was cleared (i.e., the buff/cache item, which
can be confirmed with the “free” command). More specifically, we
executed the following command each time before starting a mea-
surement.

[# echo 3 > /proc/sys/vm/drop_caches]

4.1 Description of the environment

In the evaluation, we ran all benchmarks on a server: Intel Xeon
E5-2670-v3 (12 cores, 2.3 GHz) x 2, with DDR4 384 GB memory and
an 800 GB Intel SSD. The operating system of the server was Cen-
tOS 7.1, with Linux Kernel 3.10. We used an actual dataset for the
benchmarks. The dataset included syslog data collected from the
Interop Tokyo ShowNet[5] 2016, which is a Japanese large-scale
demonstration network comprised of over 400 devices. The num-
ber of log messages received from the equipment in the Interop
Tokyo ShowNet 2016 comprised 4.35M lines, collected over two
weeks.

CFI’17, June 14-16, 2017, Fukuoka, Japan

102 SQLite3 log insert time

Il Time to store all msgs
— Time to store 1200k msgs

Time to store messages (seconds)
Time to store 1200k messages (seconds)

0.1

1k 10k 100k

Record size

Figure 4: SQLite insert time

4.2 Storage performance

Insofar as the message-generation rate for the ShowNet of Interop
Tokyo 2016 reached 20,000 messages per second, we adopted this
as the target value for the experiment. The total number of mes-
sages stored in one minute was 1200k (20k x 60 s) messages. There-
fore, to receive all of the syslog messages generated by ShowNet,
Hayabusa must be able to store 1200k messages per minute. Con-
sequently, the goal of the StoreEngine was to accumulate the data
from 1200k messages per minute. Thus, the StoreEngine satisfies
the desired performance if the log message size increases to more
than 1200k messages per minute. Given this, we retrieved bench-
mark data from an amount greater than 1200k as a preliminary
experiment for the target and performance measure (100k, 1M, the
amount of data 10M) carried out in this study.

Figure 4 shows the average time spent inserting 1k, 10k, 100k,
1M, and 10M records. As the number of messages increased, the
time spent inserting data increased linearly. Figure 4 also shows
the time required to store 1200k messages. In the cases of 1M and
10M records, the time spent was approximately 8 s. This is faster
than the desired 1200k messages per minute. The StoreEngine thus
satisfied the desired performance.

4.3 Retrieval performance

To perform high-speed data retrieval, we utilized GNU Parallel in
this proposal to achieve a simple parallel-processing mechanism.
The parallel-processing mechanism was implemented with a com-
bination of GNU Parallel, SQLite, UNIX Pipe, and the Awk program.
GNU Parallel executes the same number of processes as the num-
ber of files passed as a command line argument, and it launches an
SQLite process for each file. We adopted the following two bench-
marks.

(1) Single search process for a single DB file with various record
sizes

(2) Multiple search processes with GNU Parallel for multiple
DB files of various record sizes

As shown in Figure 5, we can confirm what kind of commands
will be executed by the GNU Parallel command by passing the
dry-run option. The results from SQLite commands executed in
parallel are aggregated by the Awk command, as shown in Figure

H. Abe, K. Shima, Y. Sekiya, D. Miyamoto, T. Ishihara and K. Okada

$ parallel --dry-run sqglite3 /path/1k-[0-9].db
"select count(*) from syslog where logs

match 'noc';"

sqlite3 /path/1k-1.db select\ count\(*x\)\ from\
syslog\ where\ logs\ match\ \'noc\'\;

sqlite3 /path/1k-2.db select\ count\(*x\)\ from\
syslog\ where\ logs\ match\ \'noc\'\;

sqlite3 /path/1k-3.db select\ count\(*\)\ from\
syslog\ where\ logs\ match\ \'noc\'\;

Figure 5: Dry-run results with GNU Parallel

$ parallel sqlite3s /pathlk-[0-9].db ::: "
select count(x) from syslog where logs match
noc';" | awk '{m+=$1} END{print m;3}'

Parallel Processing parallel sqlite3 /pathik

-[0-9].db "select count(*) from syslog
where logs match 'noc';"
Aggregator : | awk '{m+=$%$1} END{print m;3}'

Figure 6: Counting code example

select time to pick up the keyword "noc"

0.20 .
Hl select time

0.15} 1
1%}
2
S 0.10r : 1
Q
(%]

0.05} 1

0.00

1k 10k 100k M 10M 100M
Record size

Figure 7: SQLite select time

6. Although the series of SQLite commands are a part of the parallel
processing process executed by GNU Parallel, the Awk command,
which is aggregate processing, will not be performed in parallel.

4.3.1 Benchmark results (varying record sizes). Figure 7 shows
the results of the total search time for one SQLite DB file with dif-
ferent record sizes (1k, 10k 100k, 1M, and 10M). We searched for
the word “noc” in the files, using an FTS with each benchmark.
According to the results, even for the DB file with 100M records,
the search process required less than 0.19 s with the FTS function.
Therefore, we confirm that the FTS function on SQLite works well
for a single DB file.

4.3.2 Benchmark result (each file numbers). In the previous ex-
periment, we benchmarked a single DB file search time. Next, we
measured the search time with multiple files (1, 10, 100, and 1000

Hayabusa: Simple and Fast Full-Text Search Engine for Massive System Log Data

5 Parallel select time to pick up keywarod "noc"

Il 1k records
4| 10k records
Il 100k records

Seconds

10 100
Number of files

Figure 8: Parallel SQLite execution time

from pyspark.sgl import SQLContext
from pyspark import SparkContext

sc = SparkContext (appName = "test")

sqlContext = SQLContext(sc)
lines = sc.textFile("/path/to/100k-*x.log")

print(lines.filter(lambda s: 'noc' in s).count())

Figure 9: PySpark code

files), with various record sizes (1k, 10k, and 100k). We conducted
this evaluation using GNU Parallel.

Figure 8 shows the benchmark results. In the graph, the x-axis
shows the number of files, and the y-axis shows the time in seconds.
Even as the number of records increased, SQLite maintained the
same speed for FTS.

4.4 Comparison with Apache Spark

To compare the proposed method to another method, we measured
the search execution time using Apache Spark. We executed Python
code using the spark-submit command on a stand-alone Spark
environment. The Python code is shown in Figure 9.

As shown in Figure 10, Spark and Hayabusa were respectively
executed by changing the number of files (1, 10, 100, and 1000).
Furthermore, we varied the number of records stored (or lines of
messages, with Spark). When the record (or log) size was 1k and
10k, the time required to search for a word was almost the same
for both Spark and Hayabusa.

When there were fewer than 100 files, Hayabusa was faster than
Spark. However, in the case of 1000 files with 1k and 10k records,
Spark was faster than Hayabusa. Nevertheless, in cases with large
files (100k records), Hayabusa was approximately four times faster
than Spark.

CFI’17, June 14-16, 2017, Fukuoka, Japan

4.5 Comparison of the distributed processing
environment

We performed a comparison between the multiple-host Spark en-
vironment and our proposed stand-alone Hayabusa. In the evalua-
tion, we used three servers with the same configuration: Intel Xeon
E3-1231-v3 (4 cores, 3.4 GHz, 8 MB cache), with DDR3 32 GB mem-
ory and a 400 GB Intel SSD 910 (PCle 2.0). The operating system
for the servers was CentOS 7.1, with Linux Kernel 3.10.

The number of files was a pattern of 1, 10, 100, and 1000 files.
The DB record size and the logs were both 100k. The Spark envi-
ronment was built using CDH (Cloudera’s open-source software
distribution)[3].

Spark was over ten times faster than Hadoop’s MapReduce[12].
However, as shown in Figure 11, Spark was slower than the pro-
posed stand-alone Hayabusa environment. With 1000 files, the stand-
alone Hayabusa was approximately 27 times faster than the dis-
tributed Spark environment.

5 DISCUSSION

5.1 Data structure suitable for retrieval

In this proposal, we designed a time-range-based file-splitting ap-
proach. Therefore, it is possible to improve its search speed by
treating the file names as a time condition and by omitting the SQL-
based time condition required by a traditional approach. There is
a drawback to doing so, however, insofar that the number of files
will increase. Nevertheless, because we can assume parallel pro-
cessing using GNU Parallel on suitable file paths, the efficiency of
search operations will eventually improve.

5.2 Speed of SQLite

The FTS function in SQLite realizes high-speed searches using B-
Tree word management. The FTS table itself is a large index, and
it provides for faster operations than the string-matching process
executed by a standard SQLite LIKE operation. If the formats of the
log messages are known and structured, we might be able to design
a database scheme suitable for specific messages, thus improving
the search performance. However, given that a wide variety of log
messages cannot be structured like syslog, full-text searching is
appropriate.

Full-text searches with SQLite operate at very high speeds, com-
pared to full-text searching with other programs. This is due to
the manner in while files are handled with SQLite. SQLite uses
the mmap system call to process DB files in memory. In other pro-
grams, searching is slower than SQLite, because they use the read
system call for file content.

5.3 Parallelism of GNU Parallel

Apache Spark executes processes efficiently using a scheduler in a
distributed environment. However, GNU Parallel can run multiple
processes at the same time efficiently in a stand-alone environment.
In this study, Hayabusa adopts stand-alone parallel SQLite execu-
tion, and this was demonstrated to be faster than the distributed
Spark environment. This parallel execution is a powerful environ-
ment for log analysis, because it is very simple.

CFI’17, June 14-16, 2017, Fukuoka, Japan

H. Abe, K. Shima, Y. Sekiya, D. Miyamoto, T. Ishihara and K. Okada

Hayabusa and Spark to pick up keyword "noc"

1k record files

10k record files

100k record files

16 @M Hayabusa| i 16 mmm Hayabusa
14 |HEE Spark ‘ o 14/ |HEE Spark
12 e 12t

w 10} 1« 10F

kel el

= c

S gl 1 8 gl

() Q

(2] (2]
6 : 6

1 10 100
Number of files

1000 1 10

Number of files

1 16/ W Hayabusa| i o
|| Spark ‘

o
o
T
i

Seconds
=
T
i

100 1000 1 10 100
Number of files

1000

Figure 10: Hayabusa and Spark time comparison

60 Hayabusa and Spark to pick up keyword "noc"

Il Hayabusa(standalone)
sol| I Spark(distributed)

40t

301

Seconds

20r

10, H H H
0 1 10 100
Number of files

1000

Figure 11: Comparison of the distributed Spark environ-
ment and the proposed stand-alone Hayabusa

Apache Spark is usually integrated with the HDFS file system,
providing for an abstract storage access layer. Accessing the HDFS
using the abstract layer is slow, however, and Spark cannot map
the distributed files directory to memory, as is the case with the
mmap system call.

5.4 System management costs

Managing the Hadoop ecosystem is difficult because it requires
managing a large distributed system. Distributed systems have many
complex management programs, in order to achieve high availabil-
ity such that it continues to work even when some parts of the
system are inoperative. Moreover, the programs or applications
for data analysis run on a compound infrastructure. If problems
occur in these programs or applications, it is especially difficult
for administrators to find the location of the problem. By contrast,
Hayabusa works on a stand-alone server, thus minimizing manage-
ment costs.

5.5 Simple execution

Hayabusa’s execution command is simply one-liner code, as shown
in Figure 6. In our experiments, we used the spark-submit com-
mand provided by the Spark framework. Compared to the Spark
code shown in Figure 9, Hayabusa’s code is much simpler.

6 CONCLUSION AND FUTURE WORK

Hayabusa achieved good performance when accumulating and re-
trieving data. This is because Hayabusa is based on a time-range
file-splitting approach. The StoreEngine required less than seven
seconds to read and insert the DB file, which is sufficiently fast for
our target message-generation rate (of 1200k messages per minute)
calculated from the real operation of the Interop Tokyo 2016. The
SearchEngine realized fast full-text searches, without being affected
by the number of records that are registered there and the num-
ber of DB files. Hayabusa also searched keywords 27 times faster
than the distributed Spark environment. Our proposed Hayabusa
was implemented with simple and strong parallel processing us-
ing GNU Parallel. We believe Hayabusa is an efficient system that
can resolve system and network problems quickly. Apache Spark
provides a text-searching function, but only with a cache mecha-
nism for searching repeatedly in memory. Furthermore, Spark con-
tains multiple libraries for machine-learning calculations. Yet, the
most important action for troubleshooting is fast log storage and
searching. Hayabusa thus offers these crucial functions for admin-
istrators, without the complexity of Spark.

Currently, Hayabusa only works on a single server, thus limiting
its storage capability. There are some distributed storage products
available, such as HDFS or GlusterFS[7], and if Hayabusa is inte-
grated with these, it can offer large-scale storage. Indeed, we shall
consider these options for distributed storage in future research.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org/.

[2] Apache Spark. http://spark.apache.org/.

[3] Cloudera’s open source software distribution.
https://www.cloudera.com/products/open-source/apache-hadoop/key-cdh-
components.html.

Hayabusa: Simple and Fast Full-Text Search Engine for Massive System Log Data

S

S==E

[10]

[11]
[12]

Elasticsearch. https://www.elastic.co/products/elasticsearch.

ShowNet. http://www.interop.jp/2016/shownet/.

SQLite. https://www.sqlite.org/.

Simple application of glusterfs: Distributed file system for academics. Interna-
tional Journal of Computer Science and Information Technologies, 6(3), 2015.

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clus-
ters. Commun. ACM, 51(1):107-113, Jan. 2008.

A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Redundancy does not imply fault tolerance: Analysis of distributed storage re-
actions to single errors and corruptions. In 15th USENIX Conference on File and
Storage Technologies (FAST 17), pages 149-166, Santa Clara, CA, 2017. USENIX
Association.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file
system. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), MSST 10, pages 1-10, Washington, DC, USA, 2010.
IEEE Computer Society.

O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX
Magazine, 36(1):42-47, Feb 2011.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Clus-
ter computing with working sets. In Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud’10, pages 10-10, Berkeley, CA, USA,
2010. USENIX Association.

CFI’17, June 14-16, 2017, Fukuoka, Japan

