
Distributed Hayabusa: Scalable Syslog Search Engine
Optimized for Time-Dimensional Search

Hiroshi Abe
Lepidum Co. Ltd./Cocon Inc.

National Institute of Information
and Communications Technology

Keiichi Shima
IIJ Innovation Institute

Daisuke Miyamoto
The University of Tokyo

Yuji Sekiya
The University of Tokyo

Tomohiro Ishihara
The University of Tokyo

Kazuya Okada
The University of Tokyo

Ryo Nakamura
The University of Tokyo

Satoshi Matsuura
Tokyo Institute of Technology

ABSTRACT
Network administrators usually collect and store logs gener-
ated by servers, networks, and security appliances so that
when network trouble and/or security incidents occur, they
can identify the source of the problem by investigating the
contents of the logs. The size of the system needed to store
and search the log messages tends to increase as the size
of the managed network becomes large. A fast log storage
and search system called Hayabusa was previously proposed
that optimizes a time-dimensional search operation. In this
paper, we propose a simple distributed system that adds
scalability to the existing Hayabusa system. The evaluation
results show that the Distributed Hayabusa system consist-
ing of 10 servers (with multiple worker processes on each
server) is 36 times faster than a standalone Hayabusa system.
The time required to perform a full-text search over 14.4
billion data records is only about 7 s, which is su�ciently
low for the daily operations of administrators managing a
very-large-scale network.

CCS CONCEPTS
• Information systems → Distributed retrieval; Data
structures; •General and reference→ Performance; •Com-
puter systems organization → Parallel architectures;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
AINTEC ’19, August 7–9, 2019, Phuket, Thailand
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6849-0/19/08. . . $15.00
https://doi.org/10.1145/3340422.3343636

KEYWORDS
Data Processing, Parallel Processing, SQL, Parallel System

ACM Reference Format:
Hiroshi Abe, Keiichi Shima, Daisuke Miyamoto, Yuji Sekiya, Tomo-
hiro Ishihara, Kazuya Okada, Ryo Nakamura, and Satoshi Matsuura.
2019. Distributed Hayabusa: Scalable Syslog Search Engine Opti-
mized for Time-Dimensional Search. In Asian Internet Engineer-
ing Conference (AINTEC ’19), August 7–9, 2019, Phuket, Thailand.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3340422.
3343636

1 INTRODUCTION
Network operators examine the health of a network by exam-
ining statistical information based on the logs continuously
generated by network devices. When a problem occurs, a net-
work administrator identi�es the cause by searching through
the log and �xes the problem to keep the network stable. In
addition, network administrators sometimes use the log to
determine what kind of incident has occurred as well as how
to handle security incidents. In large-scale networks, many
network devices, servers, and security devices output logs
that record a large number of communications every day.
Moreover, network administrators operate a system to store
this large number of logs and search through the contents at
high speed.

Clustering systems and proprietary management software
are often used to handle large log search and storage systems.
In this case, network administrators must spend time man-
aging their search and storage systems in addition to their
primary tasks. However, they do not need to manage search
and storage systems if log storage and search systems can
be built without complex clustering systems. This would en-
able them to focus on crucial tasks such as network problem
handling and security incident analysis.

AINTEC ’19, August 7–9, 2019, Phuket, Thailand Abe and Shima, et al.

In this paper, we propose a system that can accumulate a
large number of logs output frommanymulti-vendor devices
at high speed and can search through them at high speed.
We also propose a conceptual model of a distributed system
in which search performance is improved when the system
is scaled out. The search speed of the distributed system
dramatically improves even if the number of logs handled by
the system increases. In this study, we evaluate the storage
and search performance of our proposed system with real
log data captured at the Interop Tokyo 2017 network [1],
which consists of more than 600 servers and network security
devices provided by a large number of di�erent vendors.

This paper is organized as follows. Section 2 describes re-
lated work and prior research. Section 3 introduces the archi-
tecture of the proposed system, called Distributed Hayabusa.
Section 4 introduces an implementation of the Distributed
Hayabusa system. Section 5 and 6 respectively present and
discuss the evaluation results of Distributed Hayabusa. Fi-
nally, Section 7 presents our conclusions and future work.

2 RELATEDWORK
Relational databases are often used for log analysis tasks
such as �rewall logs analysis and log volume monitoring.
However, if a relational database is used to store log data,
the database schema is typically designed to store log data.
Hence, the storage program must parse the unstructured log
data and convert them to structured data before storing them
in a relational database, which is computationally costly.
The system designer must also consider data separation, i.e.,
the use of daily, weekly, monthly, or annual tables, which
depends on the amount of data to be stored. Once the system
designer has designed the table format and schema, this
structure is not easy to change while the system is running.

When the system administrator performs a full-text search
and log analysis, a Hadoop ecosystem [8] such as a MapRe-
duce algorithm [14] or Apache Spark [22] are often used.
Huge Hadoop and Spark clusters provide users with fast
search services and good search performance. The storage
capacity and processing resources of Hadoop are designed to
be scalable. However, because a Hadoop cluster is integrated
with complicated software, it can be di�cult for a system ad-
ministrator to manage a Hadoop system stably. Even simply
building a Hadoop cluster requires specialized software.

If a system administrator tries to operate a Hadoop cluster
simply, the hardware failure rate increases as the cluster size
increases. System administrators must hence have sophisti-
cated knowledge and experience to identify fault locations
and perform stable Hadoop cluster operations.

The HDFS (Hadoop Distributed File System) [18] and Elas-
ticsearch [6] used in the Hadoop ecosystem act as distributed
storage and achieve high availability. They hold copies of

a.log

00.db

01.db

….db

59.db

Hayabusa

Store
Engine

Search  
Engine

read insert

select

select

select

rsyslogdsyslog

/var/log/

/targetdir/yyyy/mm/dd/hh/

$ parallel sqlite3 ::: target files ::: "select count(*) from xxx where logs
match 'keyword';" | awk '{m+=$1} END{print m;}'

Simple Query

SQLite DB Files(every 1 minute)

select

a.log
a.log

x.log

Figure 1: Architecture of Hayabusa.

the data, and there are elaborate mechanisms to prevent
the complete loss of data in the event of a failure. However,
accessing storage through complex processes to improve
reliability degrades processing performance.
Splunk [3] and VMware vRealize Log Insinght [11] are

commercial solutions dedicated to log storage, indexing, and
quick search. The search performance of these products is
highly dependent on the size of the cluster that they operate.
However, if the number of logs being processed increases, the
system will need cluster expansion and additional licenses,
increasing its price. Hence, achieving high performance and
redundancy in commercial products can be prohibitively
expensive.

BigQuery [10], a cloud service based on Google’s Dremel
[17], is a high-speed database service. A Google engineer
demonstrated that BigQuery can scan 12 billion records in
5 s 1. These servers run on the BigQuery back-end, built on
thousands or tens of thousands of nodes, which incur vast
operating costs.
There are also systems such as HBase [15] and In�uxDB

[9] that specialize in time-series data. A time-series database
is a data collection mechanism specialized for time-series
accumulation and retrieval. These databases are good at
accumulating numerical metrics such as monitoring data
and most of the acquired data are stored in the form of key–
value pairs. Furthermore, their implementation focuses on
the compression of the received values and storage of a large
amount of data in memory for high-speed processing.

2.1 Prior research
In previous studies on Hayabusa [13], the performance of
Hayabusa was evaluated in a stand-alone environment imple-
mented on a bare metal server. Hayabusa [13] was designed
as a system to search a large number of syslog messages
collected at high speed. Figure 1 shows the architecture of
Hayabusa.

1https://www.youtube.com/watch?v=swsS12c1VGE

Distributed Hayabusa AINTEC ’19, August 7–9, 2019, Phuket, Thailand

Hayabusa runs on a stand-alone server and performs high-
speed parallel searches using multiple CPU cores. The archi-
tecture of Hayabusa can be divided into two main parts: the
StoreEngine and SearchEngine. The StoreEngine, started by
“cron” every minute, extracts a syslog message from a target
�le and converts it into a SQLite3 [7] �le. Log data is divided
into SQLite3 �les every minute and then are processed in
parallel by multiple processes. The directory where logs are
stored is de�ned using a time-based hierarchy as follows.◆ ⇣

/targetdir/yyyy/mm/dd/hh/min.db✓ ⌘
Because Hayabusa embeds time information into the di-

rectory path structure, there is no need to hold informa-
tion about time inside the database. This directory structure
makes it possible to search logs for a speci�c time without
specifying a query condition that takes a long time to pro-
cess. The SQLite3 �le in which the log is stored consists of a
table in a format specialized for full-text search (FTS format).
Quick log search is implemented by indexing speci�cally
for full-text searches. Moreover, Hayabusa’s database has
only one table column for storing syslog strings. As a result,
the Hayabusa database does not require a schema design,
regardless of the type of log.
The SearchEngine accesses multiple SQLite3 �les, which

are de�ned as FTS tables created every minute, in parallel to
improve search performance. The parallel SQL search queries
use GNU Parallel [19] for each SQLite3 �le. The results are
aggregated using the “awk” and “count” commands through
the UNIX pipeline.

Hayabusaworks in a stand-alone environment, but has bet-
ter full-text search performance than small-scale distributed
processing clusters. However, hardware limitations exist in a
stand-alone environment, and it is likely that its performance
will eventually be overtaken by other, larger distributed pro-
cessing clusters. Hence, in this proposal, we remove the
limitation of the standalone environment for Hayabusa, as
described in the following section.

3 PROPOSED DISTRIBUTED SYSTEM
In this research, our aim is to rede�ne standalone Hayabusa
as a distributed processing system and to scale out search
processing to improve performance.

3.1 Architecture
We �rst present the storage and scheduler for distributed
Hayabusa. For the architecture, our aim is to retain process-
ing performance while inheriting the simplicity of a stan-
dalone Hayabusa architecture to avoid system complexity. A
distributed processing system such as Hadoop always gen-
erates multiple data exchanges by complex processes inside

01.db00.db ….db 59.db

/targetdir/yyyy/mm/dd/hh/

SQLite3 DB files
FTS (Full Text Search)

GNU Parallel

Consumer (ZeroMQ Worker)

Producer (ZeroMQ client)

01.db00.db ….db 59.db

/targetdir/yyyy/mm/dd/hh/

SQLite3 DB files
FTS (Full Text Search)

GNU Parallel

Consumer (ZeroMQ Worker)

01.db00.db ….db 59.db

/targetdir/yyyy/mm/dd/hh/

SQLite3 DB files
FTS (Full Text Search)

GNU Parallel

Consumer (ZeroMQ Worker)

select select select select select select select select select select select select

Distributed Hayabusa

StoreEngine StoreEngine StoreEngine

Samplicator

syslog

Client

Worker Host Worker Host Worker Host

syslog syslog syslog

Figure 2: Distributed Hayabusa architecture.

the system to operate correctly and robustly. However, we
designed Distributed Hayabusa to maintain system simplic-
ity and emphasize on processing speed without considering
error processing and retrying processing in case of failure.
The architecture of Distributed Hayabusa is shown in Figure
2.

3.2 Storage
The distributed Hayabusa storage maps time to SQLite 3 and
the directory hierarchy, as in the standalone version. Clients
can search for time ranges without specifying them in the
query.

Further, to scale out the search process, distributedHayabusa
ensures that all processing hosts have the same data so that
search queries can execute regardless of which host is used.
This means syslog data must be replicated and delivered to
all processing hosts. However, it ensures that the same re-
sult is returned, no matter which hosts processes a request.
Replicating syslog also improves data integrity. Even if a
processing host fails and data are lost, the data remain on
another processing host to enhance fault tolerance.

3.3 Scheduler
Distributed Hayabusa uses load balancing with a remote
procedure call (RPC) to schedule the search processing and
process execution mechanism using the GNU parallel tool.
When Distributed Hayabusa assigns search processing to
distributed hosts, the search processing is assigned using
load balancing, which equally distributes the processing and
RPCs using the producer/consumer model. The search pro-
cess received by each host and the query are executed as a
parallel search using GNU parallel, which is equivalent to

AINTEC ’19, August 7–9, 2019, Phuket, Thailand Abe and Shima, et al.

the standalone version of Hayabusa. The result is returned
to the client via a worker process using the RPC framework.

4 IMPLEMENTATION
4.1 Data replication
In this study, we used the open-source UDP Samplicator [5]
to replicate and send syslogs to all processing nodes. The
UDP Samplicator transfers the received UDP packet to the
speci�ed target host without changing the sender’s address.
This replication technique allows the destination host to
receive UDP packets as if it had directly received data from
the source. All processing hosts receive the same replicated
syslog packet, as shown in Figure 2.
The UDP Samplicator performs UDP transfer processing

in one process. Therefore, if it receives a large number of
syslogs and the load rises, its CPU core usage will be 100%.
In this case, the packet transfer process may not catch up,
and data may be discarded. Therefore, we applied a patch
to the UDP Samplicator using “SO_REUSEPORT” for the
socket option and modi�ed the source code to operate as
a multi-process in the proposed system. As a result, when
the UDP Samplicator receives a large number of syslogs, the
process of copying and forwarding syslog packets employs
multiple CPU cores and activates multiple processes.

4.2 Distributed search
Search processing requests are queued and processed by
the producer/consumer model. The processing host corre-
sponding to the consumer acquires the queued processing
request. At this time, the producer balances the load so that
processing requests can be distributed uniformly to each
host.
Various software can implement the producer/consumer

model, but in this research, we used ZeroMQ [16], which
can execute the processing at high speed and implement the
client and worker processes as a library. ZeroMQ is used as a
high-speed distributed message queue and can quickly imple-
ment variousmessaging patterns such as “Request/Response,”
“Publish/Subscribe,” and “Push/Pull.” In the proposed system,
we implemented the producer/consumer model using the
Push/Pull pattern.
As shown in Figure 3, ZeroMQ Push/Pull patterns are

processed in the following order.
1) The producer queues requests (push).
2) The consumer receives a request from the producer

(pull).
3) The consumer sends the result to the result collector

(push).
4) The results acquired by the result collector are sum-

marized (pull).

Push

Pull

Pull

Pull

Push

Push

Push

Pull

Producer

Consumer

Result CollectorConsumer

Consumer

Figure 3: Push/Pull pattern.

import sys

import zmq

context = zmq.Context ()

sender = context.socket(zmq.PUSH)

sender.bind(�tcp ://*:5557�)

receiver = context.socket(zmq.PULL)

receiver.bind(�tcp ://*:5558�)

cmd = �parallel target -data �SQLite3 Query Strings��

sender.send(cmd.encode(�utf -8�))

message = receiver.recv()

print(message.decode(�utf -8�))

Figure 4: Example client code.

01.db00.db ….db 59.db

/targetdir/yyyy/mm/dd/hh/

SQLite3 DB files
FTS (Full Text Search)

GNU Parallel

Consumer (ZeroMQ Worker)

Producer (ZeroMQ client)

01.db00.db ….db 59.db

/targetdir/yyyy/mm/dd/hh/

SQLite3 DB files
FTS (Full Text Search)

GNU Parallel

Consumer (ZeroMQ Worker)

01.db00.db ….db 59.db

/targetdir/yyyy/mm/dd/hh/

SQLite3 DB files
FTS (Full Text Search)

GNU Parallel

Consumer (ZeroMQ Worker)

select select select select

Client

Worker Host Worker Host Worker Host

result result result result

result

result
push

exec

command
pull

Request (push)

select select select select

result result result result

select select select select

result result result result

Response (pull)

result
push

command
pull

result
push

command
pull

resultexec resultexec

Figure 5: Push/Pull pattern using ZeroMQ on Dis-
tributed Hayabusa.

In our proposal, the client has two roles, producer and
result collector. This implementation allows clients to submit
requests, queue them, and obtain results in one process. The
source code of the client is illustrated in Figure 4.
As shown in Figure 5, the client queues the processing

request to be input to the processing host. The worker op-
erating on each host then pulls the processing request. The
worker sends the result to the client after the request has
been executed, and the client aggregates the result. The client
waits for a connection from the worker using TCP port 5557
and pushes a processing request onto a queue. The client
then receives the processing result on TCP port 5558 and
counts the results.

Distributed Hayabusa AINTEC ’19, August 7–9, 2019, Phuket, Thailand

import zmq

import subprocess

context = zmq.Context ()

receiver = context.socket(zmq.PULL)

receiver.connect (�tcp :// client :5557�)

sender = context.socket(zmq.PUSH)

sender.connect (�tcp :// client :5558�)

while True:

recv = receiver.recv()

cmd = recv.decode(�utf -8�)

res = subprocess.check_output(cmd)

sender.send(res)

Figure 6: Example worker code.

Table 1: Experimental environment.

EC2 instance c4.4xlarge

vCPU Intel Xeon CPU E5-2660 (2.9 GHz/16 cores)

Memory size 30 GB

Disk size SSD 8 GB (OS) + SSD 50 GB (Data)

OS Ubuntu 16.04.4 LTS (Xenial Xerus)

The source code of the worker is shown in Figure 6. The
worker blocks the connection from the client until the client
pushes the request onto the queue. Then, the worker pulls
the processing request from TCP port 5557. Next, the worker
processes the request that has been pulled and executes the
command included in it. Then, the worker pushes the result
to the client’s TCP port 5558.

5 EVALUATION
We used virtual server groups on EC2 (Elstic Compute Cloud)
provided by the AmazonWeb Service (AWS) [4] to conduct a
scale-out test in this study. In the scale-out test, the number
of virtual servers increases from one to ten, and the search
speed is evaluated. In addition to the processing hosts, one
client host is prepared to request distributed queries. The
speci�cations of the experimental host are listed in Table 1.

5.1 Evaluation data
Analysis of actual data shows that the syslog reception rate
of Interop Tokyo’s ShowNet [2] in 2017 was about 50,000
receptions per minute on average. The data were collected
from the beginning of the exhibition period for three days
(from June 7th to 9th). ShowNet expects further increases
in syslog reception in the future. In this veri�cation, we
veri�ed the scale-out search in a distributed environment
using 100,000 syslogs per minute.

Figure 7: Host scale-out performance test.

Figure 8: Worker scale-out performance test.

5.2 Host scale-out
To investigate the scale-out performance of the processing
host, we tested whether the processing time could be reduced
when the number of hosts increased. In this evaluation, the
number of processing hosts increased from 1 to 10, and the
client repeatedly executed 100 requests for data per day. The
target record size for 100 requests is 14.4 billion records. The
processing result is shown in Figure 7.

The results show that the search processing time for one
host is about 249 s. The processing time decreases as the
number of hosts increases; the processing time for ten hosts is
approximately 39 s. Each processing time here is the average
value of 10 trials.

5.3 Worker process scale-out
Next, we performed processing on 1 to 10 hosts and increased
the number of worker processes from 1 to 16. Here, 16 pro-
cesses were chosen because this is the number of vCPU cores
in the virtual machine. We tested howmuch the performance
improved if the number of worker processes increased up to
the number of vCPU cores. The processing results are shown
in Figure 8.

AINTEC ’19, August 7–9, 2019, Phuket, Thailand Abe and Shima, et al.

When the number of workers is around 10, as the number
of hosts increases from 1 to 10, the processing speed is maxi-
mized. The processing takes about 249 s for one worker with
one host, but the processing time reduces to about 6.8 s for 10
workers with 10 hosts. In this experiment, each processing
time is also the average value of 10 trials.

5.4 Comparison with AWS’s Elastic
MapReduce

Next, we compared Distributed Hayabusa with the Elastic
MapReduce (EMR) service provided on AWS. EMR is a ser-
vice that allows a user to build Hadoop ecosystems such
as Apache Hadoop/Hive/Spark. EMR can also refer to S3
data directly without preparing the HDFS environment by
putting data in Amazon’s S3 service.
In this experiment, we used EC2 instances (c4.4xlarge)

with the same performance as instances used for the eval-
uation of Distributed Hayabusa to evaluate the EMR. EMR
needs one master node to manage a cluster and a core node
that processes data. In the evaluation, we increased the num-
ber of core nodes from 2 to 10 to con�rm the scale-out per-
formance as the number of hosts increased. We used EMR
version emr-5.12.0 (Spark: Spark 2.2.1 on Hadoop 2.8.3 Yet
Another Resource Negotiator (YARN) [20] with Ganglia 2.7.2
and Zeppelin 0.7.3), and selected Apache Spark’s main pack-
age as the evaluation application.
We prepared 1,440 syslog �les of 100,000 lines each in

S3, which is equivalent to the estimated daily load. The ex-
periment was performed in a situation in which the target
syslog �le size is 14.4 billion lines. An amount of information
equal to that accessed by Distributed Hayabusa is accessed
by repeatedly executing data requests from the client 100
times.
The client executed the PySpark code shown in Figure

9 on the master node and performed search processing on
each core node. The �fth line represents the reading of the
target log data from S3. Line 6 loads the data into Spark’s
resilient distributed dataset (RDD) [21] cache function. RDD
is a distributed shared memory shared among multiple core
nodes, and data can be searched for at high speed on the
various nodes.

The processing result is shown in Figure 10. Because EMR
cannot build an environment with one host, the results start
at two hosts. Each reported processing time is the average
of �ve trials. We observe that the processing performance of
the full-text search scales out when increasing the number
of hosts in Spark on EMR. In this experiment, we con�rmed
that Distributed Hayabusa operates 17 times faster than a
con�guration of 10 EMR Spark hosts for a full-text search
result for the same syslog data.

import time

from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

lines = sc.textFile (�s3://abe -work/ssd2/benchmark -log/

files /100k/100k-*.log�)

lines.cache()

for i in range (5):

start = time.time()

[lines.filter(lambda s: �noc � in s).count() for i in

range (100)]

elapsed_time = time.time() - start

print elapsed_time

Figure 9: PySpark code.

Figure 10: Hayabusa and Spark time comparison.

6 DISCUSSION
6.1 E�ect of scale-out on search

performance
The results in Sections 5.2 and 5.3 show that when the host
numbers were increased, the search was approximately 6.3
times faster than the search time of one processing host.
Moreover, the search time, which took about 249 s on one
processing host, was reduced to about 6.8 s, which is ap-
proximately 36 times lower, as a result of the combination
of scaling out both the number of hosts and the number of
workers.

The number of records targeted by our experiment was
14.4 billion. The results show that Distributed Hayabusa
could thoroughly scan the 14.4 billion records in about 7 s,
indicating that we could achieve a full-scan speed compa-
rable to Google’s BigQuery, which uses more than several
thousand servers.

Distributed Hayabusa was able to realize such high-speed
scanning with ten processing hosts. We hence conclude that
the Distributed Hayabusa architecture can realize a high-
performance distributed processing system that is both rea-
sonable and cost-e�ective.

Distributed Hayabusa AINTEC ’19, August 7–9, 2019, Phuket, Thailand

6.2 Parallelization of log data
accumulation

In this research, we used a method to duplicate the same
syslog data to each processing host to cope with distributed
queries and hence improve search performance. This method
is essentially an act of duplicating a large amount of data,
which means that as the amount of data increases, and more
waste occurs in the network bandwidth and the data that
must be stored. Of course, it is possible to set the number
of replications, as in Hadoop HDFS, and to distribute and
hold data on multiple hosts. In that case, the metadata man-
agement mechanism manages the data. Data access is via
the metadata management mechanism, which may reduce
processing performance.

In our proposed system, there are bandwidth and capacity
problems due to the data duplication. However, there is no
need to relocate data, as in other distributed �le systems, in
the event of device failure. Moreover, devices are excluded
merely from management cluster targets. It can correspond
by when trouble happens in cluster.

6.3 Simplicity of design and operation
We implemented the data replication mechanism and dis-
tributed the search using the producer/consumer model in
the proposed system. Both the design and implementation
are simple, and there are few processes to manage. Dis-
tributed systems like Hadoop integrate many complex soft-
ware components. However, when a system problem occurs
in Hadoop, the complexity of understanding the cause of the
problem increases. Distributed Hayabusa constructs a dis-
tributed processing mechanism with very few components.
Hence, when a problem occurs in Distributed Hayabusa, the
problem can be quickly understood, which reduces the load
of system operation management.

6.4 Comparison with other systems
In this study, we conducted a comparative experiment with
Amazon EMR and obtained the result that distributedHayabusa
performs a full-text search about 17 times faster than EMR.
This is due to some structural di�erences that lead to perfor-
mance di�erences in processing. There are several places in
which EMR can have a processing bottleneck.

Spark, which is used in EMR, runs on Hadoop’s resource
management mechanism YARN. YARN monitors resource
allocation in Hadoop clusters, monitors and tracks running
jobs, and manages access to shared datasets held by clus-
ters. This makes it possible to manage the entire cluster
soundly and control multiple jobs in a multi-tenant environ-
ment. Distributed Hayabusa has no resource management
mechanism at present, and it is the worker that promptly

executes requests received from clients. This lack of a re-
source management mechanism is one reason Distributed
Hayabusa operates at high speed. However, because Dis-
tributed Hayabusa does not manage or track jobs, error han-
dling and retry processing cannot be performed if problems
occur. In the system architecture in this proposal, the user is
not informed if a problem has occurred and can only infer
this from the processing result.
Next, we discuss the process execution scheduler. Spark

creates a directed acyclic graph (DAG) for task execution
before scheduling the task. Spark also uses RDD to store data
in distributed shared memory and share data between DAGs.
In this way, Spark can complete the job at high speed by
optimizing and sharing data between DAGs (without writ-
ing intermediate results to disk). The scheduling mechanism
realized by Distributed Hayabusa depends on load balancing
performed by the ZeroMQ client and the execution sched-
uling of GNU parallel. It works fast because it is simple and
has little overhead. Distributed Hayabusa is not like Spark,
which calculates the optimal execution plan and realizes pro-
cessing while using distributed shared memory along with
the execution plan.
In this experiment, EMR read data from S3. Normally,

a Hadoop ecosystem would use distributed data on HDFS.
HDFS distributes data to each host in block units when the
data reach or exceed a speci�c size. In that case, the client
accesses the data via the HDFS metadata mechanism, which
slows storage access. Hayabusa maintains data as a one-
minute SQLite3 database �le. Each �le has a fast search
mechanism indexed in FTS format, which is specialized for
full-text search. Furthermore, if a user wants to narrow down
the search by time range, Hayabusa does not have to specify
the time as a SQL query condition, which speeds up pro-
cessing. In addition, because Hayabusa storage management
does not go through a metadata mechanism, high-speed data
access is possible.

6.5 Hayabusa2
The Distributed Hayabusa system proposed in this paper
does not implement some functions such as resource man-
agement and speci�c scheduling mechanisms to speed up
processing. Therefore, the architecture cannot perform re-
tries if an error or exception occurs. In addition, there are
problems with multi-tenancy and storage capacity that re-
main. Therefore, we designed Hayabusa2, which is an im-
provement of the proposed Distributed Hayabusa. The ar-
chitecture of Hayabusa2 is depicted in Figure 11. Hayabusa2
introduces a scheduling mechanism (Request Broker) that
can handle errors and exceptions. In addition, Hayabusa2
uses network storage, enabling it to store large amounts of

AINTEC ’19, August 7–9, 2019, Phuket, Thailand Abe and Shima, et al.

Client

GNU Parallel

Consumer (ZeroMQ Worker)

01.db00.db ….db 59.db

/mnt/targetdir/yyyy/mm/dd/hh/

SQLite3 DB files

Distributed Hayabusa with RequestBroker & NFS

syslog

Worker Host

rsyslogd

StoreEngine

RequestBroker

Producer (ZeroMQ client)

NFS Host
(Primary)

LogWriter

GNU Parallel

Consumer (ZeroMQ Worker)

Worker Host

GNU Parallel

Consumer (ZeroMQ Worker)

Worker Host

01.db00.db ….db 59.db

/mnt/targetdir/yyyy/mm/dd/hh/

SQLite3 DB files

NFS Host
(Backup)

mount mount mount

Figure 11: Hayaubsa2 architecture.

data without copying the data. However, Hayabusa2 now
uses more processing overhead.
Whether to use the proposed Distributed Hayabusa or

Hayabusa2 di�ers depending on the processing requirements
of the user. If the user needs state-of-the-art processing per-
formance, the user can choose Distributed Hayabusa. If stor-
age capacity is essential, Hayabusa2 can be used. We have
released Hayabusa2 as open-source software on GitHub [12],
and we are continuing development. The performance eval-
uation of Hayabusa2 is a future task.

7 CONCLUSION AND FUTUREWORK
In this paper, we designed and implemented the distributed
processing version of the Hayabusa system. The evaluation
results indicate that our implementation reduces the search
processing from 249 s on one processing host to a minimum
of about 7 s.
Distributed Hayabusa performs a full scan of 14.4 bil-

lion records of syslog data in 6 s and delivers high perfor-
mance as a full-text searchable log search engine. Distributed
Hayabusa will be a useful tool for network administrators
managing multi-vendor devices. It enables a large number
of logs to be used to perform troubleshooting and incident
response, which may shorten response times. Moreover, Dis-
tributed Hayabusa has a simple system design, which sub-
stantially lowers system management costs, allowing net-
work administrators to spend time on other important tasks.

Acknowledgement
This work was supported by JST CREST Grant Number JP-
MJCR1783, Japan.

REFERENCES
[1] 1994. Interop Tokyo. http://www.interop.jp/.
[2] 1994. ShowNet. http://www.interop.jp/2017/shownet/.
[3] 2003. Splunk. https://www.splunk.com/.
[4] 2006. Amazon Web Service. https://aws.amazon.com/.
[5] 2009. UDP Samplicator. https://github.com/sleinen/samplicator.
[6] 2010. Elasticsearch. https://www.elastic.co/products/elasticsearch.
[7] 2010. SQLite. https://www.sqlite.org/.
[8] 2011. Apache Hadoop. http://hadoop.apache.org/.
[9] 2013. In�uxDB. https://www.in�uxdata.com/time-series-platform/

in�uxdb/.
[10] 2013. An inside look at google bigquery. (2013). https://cloud.google.

com/�les/BigQueryTechnicalWP.pdf
[11] 2014. VMware vRealize Log Insight. https://www.vmware.com/

products/vrealize-log-insight.html.
[12] 2018. Hayabusa2. https://github.com/hirolovesbeer/hayabusa2.
[13] Hiroshi Abe, Keiichi Shima, Yuji Sekiya, Daisuke Miyamoto, Tomohiro

Ishihara, and Kazuya Okada. 2017. Hayabusa: Simple and Fast Full-
Text Search Engine for Massive System Log Data. In Proceedings of the
12th International Conference on Future Internet Technologies (CFI’17).
ACM, New York, NY, USA, Article 2, 7 pages. https://doi.org/10.1145/
3095786.3095788

[14] Je�rey Dean and Sanjay Ghemawat. 2008. MapReduce: Simpli�ed
Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008),
107–113. https://doi.org/10.1145/1327452.1327492

[15] George L. 2011. HBase: The De�nitive Guide: Random Access to Your
Planet-Size Data (1st ed.). O’Reilly Media, Inc.

[16] Pieter Hintjens. 2011. 0MQ - The Guide. http://zguide.zeromq.org/
page:all

[17] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geo�rey Romer, Shiva
Shivakumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interac-
tive Analysis of Web-Scale Datasets. In Proc. of the 36th Int’l Conf on
Very Large Data Bases. 330–339. http://www.vldb2010.org/accept.htm

[18] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. 2010. The Hadoop Distributed File System. In Proceedings
of the 2010 IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST) (MSST ’10). IEEE Computer Society, Washington, DC,
USA, 1–10. https://doi.org/10.1109/MSST.2010.5496972

[19] O. Tange. 2011. GNU Parallel - The Command-Line Power Tool. ;login:
The USENIX Magazine 36, 1 (Feb. 2011), 42–47. https://doi.org/10.5281/
zenodo.16303

[20] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley,
Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. 2013. Apache
Hadoop YARN: Yet Another Resource Negotiator. In Proceedings of the
4th Annual Symposium on Cloud Computing (SOCC ’13). ACM, New
York, NY, USA, Article 5, 16 pages. https://doi.org/10.1145/2523616.
2523633

[21] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing. In Proceedings of
the 9th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI’12). USENIX Association, Berkeley, CA, USA, 2–2.
http://dl.acm.org/citation.cfm?id=2228298.2228301

[22] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-
ing Sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics in
Cloud Computing (HotCloud’10). USENIX Association, Berkeley, CA,
USA, 10–10. http://dl.acm.org/citation.cfm?id=1863103.1863113

