
Vol.:(0123456789)1 3

Telecommunication Systems
https://doi.org/10.1007/s11235-021-00780-3

Performance evaluation of DNS servers to build a benchmarking
system of DNS64 implementations

Gábor Lencse1 · Attila Pivoda2 · Keiichi Shima3

Accepted: 20 March 2021
© The Author(s) 2021

Abstract
DNS64 is an important IPv6 transition technology that facilitates the communication of an IPv6 only client with an IPv4
only server, which becomes a more and more common scenario. Several different DNS64 implementations exist, and their
performance is a relevant decision factor for network operators. RFC 8219 has defined a benchmarking methodology for
DNS64 servers, which requires the operation of an authoritative DNS server at 220% of the query rate used for DNS64
benchmarking. In this paper, we aim to build an authoritative DNS server that operates at 2.2 million qps (queries per
second) rate, thus it facilitates DNS64 benchmarking up to 1,000,000 qps rate. To that end, we compare the performance
of BIND, YADIFA, NSD, Knot DNS and FakeDNS (a special purpose software) to find the best suiting one of them. We
fully disclose the details of our measurements including the configuration of the DNS implementations, the usage of our
improved software tester called dns64perf ++, and the details of the hardware and software measurement environment
in the NICT StarBED, Japan. We perform a series of measurements to examine, how the performance of the tested solutions
scale up with the number of the active CPU cores from 1 to 32. Besides their performance, we also measure their memory
consumption and zone load time. We present and discuss all the results. In addition to successfully building an authoritative
DNS server with the required performance, we also make recommendations, which solutions suit to different special needs.

Keywords Authoritative DNS server · Benchmarking · DNS64 · NAT64 · Performance analysis

1 Introduction

Currently, we are in a transition from IPv4 to IPv6 [1].
Unfortunately, these two versions of the Internet Protocol
are not compatible with each other, and IETF has standard‑
ized several IPv6 transition technologies to facilitate their
cooperation in various communication scenarios [2]. For
example, DNS64 [3] servers and NAT64 [4] gateways are
used to enable the IPv6 only clients to communicate with
IPv4 only servers, which is going to be a more and more
common scenario due to the deployment of IPv6 on the cli‑
ent side and the fact that some servers will remain IPv4 only

for the foreseeable future. Network operators will need to
choose the best suiting DNS64 implementations to their pur‑
poses from among several ones, and performance is one of
the key decision factors. We have already published a paper
about the performance comparison of four DNS64 imple‑
mentations in 2016 [5]. Then RFC 8219 [6] has defined a
benchmarking methodology for IPv6 transition technologies
including DNS64 in 2017. The benchmarking procedure for
DNS64 servers, which we have described in more details in
[7], requires the usage of a high performance authoritative
DNS server during the benchmarking of DNS64 servers (we
give more details in Sect. 2.1). The first author of this paper
had the opportunity to measure the performance of three
DNS64 implementations in an RFC 8219 compliant way as
a guest researcher in Japan [8]. The tested implementations
showed a moderate performance, which is very far away
from the performance of the Google public DNS server,
which is about 810,000 qps (query per second) on average
[9]. Therefore, we set our goal to develop a high perfor‑
mance DNS64 server and to be able to benchmark DNS64
implementations up to 1 million queries per second rate.

 * Gábor Lencse
 lencse@sze.hu

1 Department of Telecommunications, Széchenyi István
University, 1 Egyetem tér, Győr 9026, Hungary

2 Wisper s.r.o., 10 Jánošíkova, 94078 Nové Zámky, Slovakia
3 IIJ Innovation Institute Inc, Iidabashi Grand Bloom, 2‑10‑2

Fujimi, Chiyoda‑ku, Tokyo 102‑0071, Japan

http://orcid.org/0000-0001-5552-3237
http://orcid.org/0000-0002-5565-8649
http://orcid.org/0000-0003-2512-2584
http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-021-00780-3&domain=pdf

 G. Lencse et al.

1 3

The aim of our current effort is to build a high perfor-
mance authoritative DNS server that facilitates the bench‑
marking of DNS64 implementations up to 1,000,000 qps
rate. To that end, we evaluate the performance of different
authoritative DNS server implementations BIND, YADIFA,
NSD, Knot DNS and FakeDNS (a special purpose software)
to find the best candidate for our purpose. We also disclose
the details of their configuration as well as the necessary
settings of our test environment to be able to receive several
millions of packets per second.

The remainder of this paper is organized as follows: In
Sect. 2, we summarize all background information, including
the highlights of DNS64 benchmarking, as well as the opera‑
tion of our testing tool and its improvements in a nutshell.
In Sect. 3, we introduce the tested authoritative DNS server
implementations and disclose their settings. In Sect. 4, we
explain the details of the measurements. In Sect. 5, we report
and discuss our results. In Sect. 6, we unfold our plans for
future research. In Sect. 7, we give our conclusions.

2 Background information
on benchmarking DNS64 servers

2.1 Benchmarking methodology for DNS64 servers

We have defined a benchmarking methodology for DNS64
servers in Section 9 of RFC 8219 [6] and elaborated its
details in [7]. Now we present only a very brief summary of
it. The compulsory test of the DNS64 benchmarking proce‑
dure follows the test and traffic setup shown in Fig. 1. This
is the “worst case” scenario, when all the following six mes‑
sages are used:

1. The Measurer subsystem of the Tester sends a query for
an IPv6 address (“AAAA” record) of the domain name
in question to the tested DNS64 server, which is the
DUT (Device Under Test).

2. The DUT sends a query for an IPv6 address of the same
domain name to the AuthDNS (Authoritative DNS
Server) subsystem of the Tester.

3. The AuthDNS subsystem of the Tester replies with an
empty “AAAA” record.

4. The DUT sends a query for an IPv4 address (“A” record)
of the same domain name to the AuthDNS subsystem of
the Tester.

5. The AuthDNS subsystem of the Tester replies with a
valid “A” record.

6. The DUT synthesizes an IPv4-embedded IPv6 address
[10] using either the NAT64 well‑known prefix or a net‑
work specific prefix plus the received “A” record, and
then it returns the synthesized “AAAA” record to the
Measurer subsystem of the Tester.

To eliminate caching, all different domain names must
be used during the at least 60 s long testing. The tester
sends the queries at a constant rate and checks the replies
if they arrive within the required timeout time and contain
a valid “AAAA” record. If yes, then the test is success‑
ful, otherwise it is failed. The DNS64 performance is the
highest rate at which the test is successful. In practice, a
binary search is used to find the highest such rate. And the
binary search is to be executed at least 20 times, and the
final result is the median of the at least 20 results, whereas
their first and 99th percentiles are used to show the stabil‑
ity of the results.

To certify the Tester (including its both subsystems:
Measurer and AuthDNS) for testing up to r rate with t
timeout, a self‑test must be performed at 2.2*r rate and
with 0.25*t timeout. In short, the rationale for 220% of
the rate is that the AuthDNS subsystem has to serve two
queries for each query to the DUT, and 10% is the perfor‑
mance reserve. As for the timeout, thus together the half
of the time can be used up by the AuthDNS subsystem for
serving the two queries, and the other half remains for the
DUT. (Please refer to [6] and [7] for further details.)

As for our measurements, the 220% of the query rate
means that the requirement for the Authoritative DNS
server subsystem is 2,200,000 qps rate to be able to test
the DNS64 servers up to 1,000,000 qps rate. As for time‑
out, we have shown it in [7] that it should be 1 s for the
DNS64 servers and thus the timeout should be 250 ms
for the Authoritative DNS server used to support DNS64
benchmarking.

Fig. 1 Test and traffic setup for benchmarking DNS64 servers [11]

Performance evaluation of DNS servers to build a benchmarking system of DNS64 implementations

1 3

2.2 The operation of dns64perf ++ in a nutshell

The operation of the original version of dns64perf ++ is
described in detail in our open access paper [11], therefore,
we only give a very short summary of it.

To be able to generate a high number of requests for all
different domain names that can be described systematically,
dns64perf ++ uses the following namespace: {0.0.255}‑
{0.0.255}‑{0.0.255}‑{0.0.255}.dns64perf.test. During
DNS64 tests, these names are resolved to IPv4 address.
(For example, 000‑001‑002‑003.dns64perf.test is resolved
to 0.1.2.3.) A subset of the namespace to be used can be
expressed by the IPv4 address range, which the domain
names are mapped to. E.g. 10.0.0.0/8 means a name space of
 224 size with the following names: 010‑{0.0.255}‑{0.0.255}‑
{0.0.255}.dns64perf.test.

However, for the self‑test of the tester, the domain names
have to be resolved to IPv4‑embedded IPv6 addresses by
the DNS server, because dns64perf ++ can send only
requests for “AAAA” records. (The domain name in the
above example can be mapped to 2001:db8::0.1.2.3.)

The task of the dns64perf ++program is to perform
one elementary test, and a bash shell script is used to per‑
form the binary search and its 20 repetitions.

Originally, dns64perf ++ used only two threads
(one thread for sending the queries and another thread for
receiving the replies), and it was capable of testing up to
200,000 qps rate [11]. When we tested its accuracy, we have
discovered a bug in its timing algorithm, which made it unre‑
liable over about 50,000qps rate, and we have corrected
it and rechecked its accuracy [12]. We have also enabled
dns64perf ++ for benchmarking the caching performance
of DNS64 servers [13], which is an optional test of RFC
8219.

Dániel Bakai, the author of dns64perf ++, has made
different developments on dns64perf ++ so that it can
be used for benchmarking up to several million queries per
second. The “multiport” feature [14] (latest commit d6fa119
on Oct 8, 2018) includes all the following ones:

1. Usage of 2*n threads (n threads for sending queries
and another n threads for receiving and processing the
replies)

2. Usage of IPv4 as transport protocol. (For DNS64 testing,
it has to communicate over IPv6, but we experienced
higher self‑test performance over IPv4, therefore we
used IPv4 in our experiments.)

3. Usage of multiple source port numbers. We need it for
RSS (Receive Side Scaling), please refer to Sect. 4.2.

Besides his development, we also added a further feature
that pins the threads to given CPU cores using the function
pthread_setaffinity_np(), to avoid their wandering

among CPU cores. Our modified source code is available
from [15].

2.3 Size of the name space

The size of the name space was determined to be “/5”, which
corresponds to 227 = 134,217,728 different domain names,
and it is enough up to 2,236,962 qps rate, if the test last for
the required 60 s.

3 DNS implementations and their settings

In this section, we enumerate the selected authoritative DNS
server implementations, give the reasons for their selection
and disclose their settings. We have considered only free
software [16] implementations for the same reasons as given
in Sect. 3 of [5].

3.1 BIND

BIND of ISC [17] is the most popular DNS server imple‑
mentation, therefore it was a must to be included in our
benchmarking.

We have tested its two different versions. The
9.10.3‑P4‑Debian version, which was included in our Debian
distribution, and also its version 9.12.4, which was down‑
loaded in source and compiled with the --with-tun-
ing = large option to test their performance difference.

Its configuration was very simple, the following lines
were appended to the /etc/bind/named.conf.
local file:

3.2 YADIFA

YADIFA of EURid is told to be one of the lowest memory
footprint authoritative DNS server [18]. We have success‑
fully used it to support DNS64 benchmarking and we expe‑
rienced that it outperformed BIND [8]. For our current pro‑
ject, we used its 2.2.3–6237 version, which was included in
our Debian distribution. Its configuration was very simple,
we added the following lines to /etc/yadifa/yadi-
fad.conf:

 G. Lencse et al.

1 3

In addition to that, we had to copy the zone file to /var/
lib/yadifa.

3.3 NSD

The NSD of NLnet Labs was optimized for serving high
number of requests per second [19]. We used its 4.1.14 ver‑
sion, which was included in our Debian distribution.

NSD supports the SO_REUSEPORT socket option [20],
which improves performance of the network stack on a
multi‑core computer if server-count is set to higher
than 1 [21].

Its zone file was configured by adding the following lines
to the /etc/nsd/nsd.conf file:

Unlike BIND and YADIFA, NSD can utilize only a single
CPU core, unless the required number of processes is explic‑
itly specified by the server-count option. Therefore,
we always set this value to the number of active CPU cores.

3.4 Knot DNS

Knot DNS of CZ.NIC is a modern, high performance DNS
server [22]. Knot DNS also supports the SO_REUSEPORT
socket option, and it does not need to be enabled in the con‑
figuration file, as it is enabled by default [23].

Its configuration was very simple, the following lines
were added to /etc/knot/knot.conf:

3.5 FakeDNS

FakeDNS is a special purpose program developed by Dániel
Bakai using the code base of the mtd64-ng DNS64 server
to eliminate the need for an authoritative DNS server, when
performing DNS64 benchmarking [24]. FakeDNS does not

use a zone file, and it can serve only the name space used by
dns64perf ++: it simply takes the information from the
first label (e.g. 000‑001‑002‑003) to calculate the appropri‑
ate IPv4 address (e.g. 0.1.2.3). As it does not use a zone
file, it starts very fast and it uses only a very low amount of
memory. Similarly to mdt64-ng, FakeDNS is also multi‑
threaded. As it did not provide the required performance
during our preliminary measurements, Dánial Bakai has
developed an experimental feature, called as “moreproc”.
It starts a separate process for every single CPU core, and
a modified version of iptables is used to distribute the
requests among the processes.

FakeDNS was configured in /etc/fakedns.conf
as follows:

As dns64perf ++ sends its requests to port 53, we
used a special kernel module and iptables patch pre‑
pared by Dánial Bakai, which could rewrite the destination
port numbers in the requests and the source port number in
the replies. The requests were distributed equally among the
fakedns processes using the nth mode of the statis-
tics module of iptables.

4 Measurements

4.1 Hardware and software environment

The measurements were carried out using the resources of
the NICT StarBED, Japan. The measurement setup is shown
in Fig. 2. Dell PowerEdge R430 servers were used both as
the Tester and as the DUT (Device Under Test). They had
two 2.1 GHz Intel Xeon E5‑2683 v4 CPUs having 16 cores
each, 384 GB 2400 MHz DDR4 RAM and Intel 10G dual
port X540 network adapters. They were interconnected by
a 10 Gbps VLAN.

Debian Linux 9.6 with kernel version 4.9.0‑8‑amd64 was
installed on both computers.

Based on our benchmarking experience [8] and [25],
we switched off Hyper‑Threading on both computers to
achieve consistent results. Turbo Boost was left enabled
on the Tester, but it was switched off on the DUT to avoid
the influence of the power budget on the scale up tests
(see below). Thus the CPU clock frequency of the Tester
could theoretically vary from 1.2 to 3 GHz, but power
budget limited it to 2.6 GHz, when all cores were used by
dns64perf ++. The CPU clock frequency of the DUT

Performance evaluation of DNS servers to build a benchmarking system of DNS64 implementations

1 3

could vary from 1.2 to 2.1 GHz. The CPU clock frequency
scaling governor was set to “performance” for all active
CPU cores on both computers.

We wanted to know, how the performance of each DNS
implementation scales up with the number of CPU cores.
To set the required number of active CPU cores, we used
the maxcpus = N kernel parameter to activate N number
of CPU cores at boot time. We tested with 1, 2, 4, 8, 16
and 32 active CPU cores.

4.2 Receive‑side scaling

In the past network interfaces used only a single queue for
forwarding the packets from the hardware to the operating
system kernel. This solution limited the processing of the
received packets to a single CPU core, which became a
bottleneck. RSS (Receive‑Side Scaling) [26], (also called
multi-queue receiving) can efficiently distribute the incom‑
ing packets among the CPU cores, thus increasing the per‑
formance of the networking stack. In practice, the NICs
(Network Interface Cards) use a hash value to distribute
the incoming packets into the queues, that is, to assign
them to the CPU cores. By default, only the source and
destination IP addresses are used to compute the hash
value. In real life, there are a high number of different
source IP addresses can be found in the requests arriving
to a DNS server. However, in our case, they were all the
same. The Intel X540‑AT2 adapters of our servers facili‑
tated the usage of the four tuple (source IP address, des‑
tination IP address, source port number, destination port
number). Therefore, we enabled this feature both on the
Tester and on the DUT by the following command:

This setting was a prerequisite to be able to test up to 2.2
million query per second rate [27].

4.3 Execution of the measurements

A single execution of the dns64perf ++ program can be
used to decide, if the system can serve all the requests at the
specified rate during the 60 s long time interval required
by RFC 8219. The highest such rate can be determined by
a binary search. As for DNS64 measurements, RFC 8219
requires to execute the binary search at least 20 times, and
the final result is the median of the 20 results, whereas the
first percentile and the 99th percentile are used to express
the indices of dispersion, which are the minimum and maxi‑
mum, if the number of repetitions of the binary search is
less than 100.

The binary search and its 20 repetitions were imple‑
mented by a bash shell script. The upper limit of the binary
search was set to 2,236,962 qps, and the 8.0.0.0/5 name
space was used for the measurements.

Independently from the number of active CPU cores of
the DUT, always all 32 core were used on the Tester, and
both the number of sending and receiving threads were
always 16. The number of source port numbers per sending
thread were set to 2048, to facilitate an even distribution of
the arriving packets among the CPU cores.

4.4 Measuring further important quantities

DNS resolution performance is definitely the most impor‑
tant decision factor, but some other quantities may also be
important, when selecting the most suitable implementa‑
tion to support DNS64 benchmarking. Not to interfere with
the benchmarking tests, we have measured separately the
memory consumption of the different authoritative DNS
server implementations as well as the load time of a “/5”
size zone file.

5 Results

First, we disclose and evaluate the performance of the differ‑
ent implementations one by one focusing on the scale up of
their performance, and then we make a comparison.

In addition to that, we also expose the memory consump‑
tion and start up time of the different DNS implementations.

Fig. 2 Measurement setup for benchmarking authoritative DNS serv‑
ers

 G. Lencse et al.

1 3

5.1 BIND

The domain name resolution performance of BIND
9.10.3‑P4‑Debian is shown in Fig. 3. (The columns show
the median of the 20 results, and the error bars show the first
and 99th percentiles.) As for the scale up of the performance
of BIND, there is a strange phenomemon at four cores.
Unlike with any other number of CPU cores, at four cores,
the performance is not doubled compared to two cores, but
it is even lower than that. We have found its root cause by
checking the number of started UDP listeners in the /var/
log/syslog file. At one and two cores, the number of
UDP listeners was equal with the number of active CPU
cores, however, from 4 cores, the number of UDP listeners
was only the half of the number of active CPU cores. Thus
the number of listeners beacame a bottleneck at four active
CPU cores.

The domain name resolution performance of BIND com‑
piled with the --with-tuning = large option is shown
in Fig. 4. On the one hand, the single core performance
increased drastically from 10,564 to 57,670 qps compared
with the previous case, however, on the other hand, there are
problems with the scale up. The phenomenon that the per‑
formance did not increase from one to two active CPU cores
can be explained by the fact that BIND used a single UDP
listener in both cases. From four active CPU cores, BIND
used one less UDP listeners than the number of active CPU
cores. Unfortunately, the performance showed decrease from
16 to 32 cores. The high difference between the first percen‑
tile and the 99th percentile of the results from 4 to 32 cores
is another issue. (We need to consider the first percentile for
DNS64 benchmarking.)

We did not do any further performance tuning and we did
not go into deeper analysis of the behavior of BIND, as our
purpose was to find an implementation which suited to our
needs and BIND was deliberately far from it.

5.2 YADIFA

The domain name resolution performance of YADIFA
2.2.3–6237 is shown in Fig. 5. On the one hand, YADIFA
showed a good single core performance (154,800 qps), but
on the other hand its performance scaled up very poorly
with the number of active CPU cores, which is a funda‑
mental problem in the case of our current multi‑core CPUs.
(It also showed significantly scattered results at two active
CPU cores.) Thus YADIFA is definitely not a candidate for
our purposes.

5.3 NSD

We have performed two measurement series with NSD. In
the first case, RSS was set to include the source and des‑
tination port numbers in the hash value, as described in
Sect. 4.2. In addition to that, we have also performed another
measurement series excluding the port numbers from the
hash to demonstrate the difference.

Fig. 3 The domain name resolution performance of BIND
9.10.3‑P4‑Debian as a function of the number of active CPU cores

Fig. 4 The domain name resolution performance of BIND 9.12.4
compiled with the --with-tuning = large option as a function
of the number of active CPU cores

Fig. 5 The domain name resolution performance of YADIFA 2.2.3–
6237 as a function of the number of active CPU cores

Performance evaluation of DNS servers to build a benchmarking system of DNS64 implementations

1 3

The domain name resolution performance of NSD 4.1.14
with properly set RSS is shown in Fig. 6. NSD has shown
an excellent performance, having both a high single core
performance (188,872 qps) and very also a good scale up.
We mention that its median performance has reached the
upper limit of the binary search at 32 active CPU cores, but
its DNS64 benchmarking relevant performance (that is the
1st percentile) was not limited by the size of the zone file.

The domain name resolution performance of NSD 4.1.14
with default RSS is shown in Fig. 7. As expected, its perfor‑
mance was limited by the packet receiving performance of
a single CPU core. We note that the CPU core, which pro‑
cessed all the packet arrivals (interrupts) was not excluded
from the operation of NSD. (We did not want to do any
tuning, our only purpose with this experiment was to dem‑
onstrate the need for the properly set RSS.)

5.4 Knot DNS

The domain name resolution performance of Knot DNS 2.4.0
is shown in Fig. 8. It has shown an excellent performance

with any number of CPU cores, and its median performance
at 32 cores was significantly limited by the size of the zone
file, but the first percentile was “only” 2,236,824 qps. Even
though its results were significantly scattered at 16 active
cores, the first percentile of its results was definitely higher
than our targeted 2.2 Mqps at 32 cores.

5.5 FakeDNS

The performance of FakeDNS is shown in Fig. 9. It both
showed a good single core performance and it scaled up
quite well, though it produced significantly scattered results
(especially at 16 active CPU cores).

5.6 Performance comparison

We have compared the DNS64 benchmarking relevant per‑
formance of the different solutions, that is, the first percen‑
tiles of the results of their 20 tests in Fig. 10.

In general, Knot DNS and NSD have shown the best
performance and the third one was FakeDNS. Knot DNS
has outperformed NSD at 32 cores, and it was the only

Fig. 6 The domain name resolution performance of NSD 4.1.14 with
properly set RSS as a function of the number of active CPU cores.
(Its median performance at 32 cores was limited by the size of the
zone file.)

Fig. 7 The domain name resolution performance of NSD 4.1.14 with
default RSS as a function of the number of active CPU cores

Fig. 8 The domain name resolution performance of Knot DNS 2.4.0
as a function of the number of active CPU cores. (Its median perfor‑
mance at 32 cores was limited by the size of the zone file.)

Fig. 9 The performance of FakeDNS as a function of the number of
active CPU cores

 G. Lencse et al.

1 3

implementation that achieved 2.2 Mqps, thus it is our num‑
ber one recommendation. But NSD was somewhat better at
lower number of cores, and NSD with default RSS is defi‑
nitely the best choice, when only a single CPU core can be
used.

Both BIND and YADIFA have shown low performance.
BIND suffered from very low single core performance (its
bar is hardly visible at a single CPU core in Fig. 10), and the
performance of YADIFA scaled up poorly.

For our final recommendation, we need to consider also
some other decision factors, which we address in the next
subsection.

5.7 Memory consumption and zone load time

The memory consumption of the tested authoritative DNS
servers with a “/5” size zone is shown in Fig. 11. YADIFA
has shown the lowest memory consumption (23 GB), which
complies with the claim of its developers that YADIFA is a
low memory footprint server. However it cannot utilize the
entries of such a large zone file in a 60 s long test. On the
other hand, NSD required the highest amount of memory,
38.1 MB, which is still affordable, if the server has at least
64 MB of RAM.

The load time of the tested authoritative DNS servers
with a “/5” size zone is shown in Fig. 12. It is important
to mention that NSD (with its default settings) prepares a
binary zone file at the time of its first start. Using a “/5” size

Fig. 10 Comparison of the DNS64 benchmarking relevant performance of the different solutions

Fig. 11 Comparison of the memory consumption of the different
authoritative DNS server implementations. (Lower is better.)

Performance evaluation of DNS servers to build a benchmarking system of DNS64 implementations

1 3

zone, this binary zone file occupied 84.1 GB disk space, and
we stored it on a RAM‑drive. The initial load time of NSD
was 657 s and the subsequent ones were only 210 s. (If the
binary zone file is stored on a hard drive, the subsequent
zone loads last much longer due to the lower disk reading
speed.) The second fastest one was Knot DNS (315 s).

5.8 Recommendation for DNS64 benchmarking

All in all, we recommend Knot DNS as authoritative DNS
server to support DNS64 benchmarking up to 1,000,000 qps
rate.

When somewhat lower rates are satisfactory, NSD and
FakeDNS can also be good choices. FakeDNS is the best
choice, if there is not enough memory in the server, or if
very fast start is needed. (Please see further explanation in
Sect. 5.7.)

When only a single CPU core is available for the authori‑
tative DNS server, NSD with default RSS can provide the
highest performance.

5.9 Discussion of FakeDNS

First of all, we note that FakeDNS is only a byproduct of
mtd64-ng, an experimental DNS64 server [24].

Our result that the performance of FakeDNS is lower than
that of NSD or Knot DNS can be explained by the fact that
FakeDNS has to convert the 4 times 3 decimal digits of the
first label of the DNS query to an unsigned 32‑bit integer
(IPv4 address), whereas the real authoritative DNS servers
can read the IPv4 address directly from the memory. NSD
and Knot DNS are good examples that the latter solution

may be faster. BIND and YADIFA are good examples for
the opposite case.

We believe that there is room for FakeDNS in DNS64
benchmarking. If the servers used for benchmarking are
shipped with only 32 GB of memory, the zone file cannot
be loaded into the memory without swapping, but swapping
is unacceptable due to its performance penalty. Even if there
is enough memory, the fast start of the test system may be
attractive, and thus FakeDNS can be a good choice, when
its performance is enough.

5.10 Construction of a high performance DNS64
benchmarking system

Following the method of using three devices for DNS64
benchmarking (that is, the Measurer and the AuthDNS
subsystems of the Tester are implemented by two separate
devices), originally invented and disclosed in Fig. 6. of [7]
and also used in Fig. 2 of [8], we have constructed a meas‑
urement setup for benchmarking DNS64 servers as shown in
Fig. 13. The selected authoritative DNS server implementa‑
tion is executed by node p093, and it is to be configured as
described in Sect. 3 of our current paper. It is important to
set RSS so that it considers also the source and destination
port numbers for both IPv4 and/or IPv6 an all interfaces
used for measurements. We note that the “link” on the right
side of the figure serves only the purpose of checking the

Fig. 12 Comparison of the load time of a “/5” size zone of the differ‑
ent solutions. (Lower is better.)

Fig. 13 Measurement setup for benchmarking DNS64 servers

 G. Lencse et al.

1 3

performance of the authoritative DNS server, and it is not
used during DNS64 benchmarking. (RFC 8219 requires
to perform the self‑test of the Tester, before it is used for
benchmarking DNS64 servers.)

6 Plans for future research

Our plans for future research include the further develop‑
ment of mtd64-ng our tiny DNS64 proxy [24] and its
benchmarking, which became feasible by our current results.

7 Conclusion

We have selected the following free software authoritative
DNS server implementations as potential candidates for sup‑
porting DNS64 benchmarking: BIND, YADIFA, NSD, Knot
DNS, plus a special purpose software called FakeDNS.

We have built a suitable test system for benchmarking the
selected solutions, and we have compared their performance,
memory consumption, and zone file load time.

We have found that Knot DNS can be used to support
DNS64 benchmarking up to 1,000,000 qps rate.

When lower rates are satisfactory, NSD and FakeDNS are
also good choices. FakeDNS is the best choice, if there is not
enough memory in the server, or if very fast start is needed.

When only a single CPU core is available for the authori‑
tative DNS server, NSD with default RSS can provide the
highest performance.

Acknowledgements The experiments were carried out by remotely
using the resources of NICT StarBED, 2‑12 Asahidai, Nomi‑City, Ishi‑
kawa 923‑1211, Japan. The authors would like to thank Shuuhei Taki‑
moto for the possibility to use StarBED, as well as to Satoru Gonno for
his help and advice in StarBED usage related issues.

Authors’ contribution GL: Conceptualization, Methodology, Software,
Resources, Writing—original draft, Writing—review and editing,
Supervision. AP: Investigation, Methodology, Visualization, Writ‑
ing—review and editing. KS: Writing—review and editing.

Funding Open access funding provided by Széchenyi István Univer‑
sity (SZE). Our research received no funding, but we would like to
acknowledge that we could freely use the resources of NICT StarBED,
Japan, please refer to our acknowledgement at the end of the paper.

Code availability D. Bakai, “Dns64perf++: A C++14 DNS64 Tester”,
source code. https:// github. com/ bakaid/ dns64 perfpp. G. Lencse, Modi‑
fied source files of dns64perf++, Available: http:// www. hit. bme. hu/
~lencse/ dns64 perfpp.

Declarations

Conflicts of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri‑
bution 4.0 International License, which permits use, sharing, adapta‑
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Nikkhah, M., & Guérin, R. (2016). Migrating the internet to
IPv6: An exploration of the when and why. IEEE/ACM Transac-
tions on Networking, 24(4), 2291–2304. https:// doi. org/ 10. 1109/
TNET. 2015. 24533 38.

 2. Lencse, G., & Kadobayashi, Y. (2019). Comprehensive survey
of IPv6 transition technologies: A subjective classification for
security analysis. IEICE Transactions on Communications,
E102-B(10), 2021–2035. https:// doi. org/ 10. 1587/ trans com.
2018E BR0002.

 3. Bagnulo, M., Sullivan, A., Matthews, P., & Beijnum, I. (2011).
DNS64: DNS extensions for network address translation from
IPv6 clients to IPv4 servers. RFC 6147.

 4. Bagnulo, M., Matthews, P., & Beijnum, I. (2011. Stateful
NAT64: Network address and protocol translation from IPv6
clients to IPv4 servers. IETF RFC 6146.

 5. Lencse, G., & Répás, S. (2016). Performance analysis and com‑
parison of four DNS64 implementations under different free
operating systems. Telecommunication Systems, 63(4), 557–577.
https:// doi. org/ 10. 1007/ s11235‑ 016‑ 0142‑x.

 6. Georgescu, M., Pislaru, L., & Lencse, G. (2017). Benchmarking
methodology for IPv6 transition technologies. IETF RFC 8219.

 7. Lencse, G., Georgescu, M., & Kadobayashi, Y. (2017). Bench‑
marking methodology for DNS64 servers. Computer Commu-
nications, 109(1), 162–175. https:// doi. org/ 10. 1016/j. comcom.
2017. 06. 004.

 8. Lencse, G., & Kadobayashi, Y. (2018). Benchmarking DNS64
implementations: Theory and practice. Computer Communica-
tions, 127(1), 61–74. https:// doi. org/ 10. 1016/j. comcom. 2018.
05. 005.

 9. Chen, J. K. Google public DNS: 70 billion requests a day and
counting. Google Official Blog. https:// googl eblog. blogs pot. hu/
2012/ 02/ google‑ public‑ dns‑ 70‑ billi on‑ reque sts. html.

 10. Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., & Li, X.
(2010). IPv6 addressing of IPv4/IPv6 translators. IETF RFC
6052.

 11. Lencse, G., & Bakai, D. (2017). Design and implementation of a
test program for benchmarking DNS64 servers. IEICE Transac-
tions on Communications, E100-B(6), 948–954. https:// doi. org/
10. 1587/ trans com. 2016E BN0007.

 12. Lencse, G., & Pivoda, A. (2018). Checking and increasing the
accuracy of the dns64perf++ measurement tool for bench‑
marking DNS64 servers. International Journal of Advances

https://github.com/bakaid/dns64perfpp
http://www.hit.bme.hu/~lencse/dns64perfpp
http://www.hit.bme.hu/~lencse/dns64perfpp
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TNET.2015.2453338
https://doi.org/10.1109/TNET.2015.2453338
https://doi.org/10.1587/transcom.2018EBR0002
https://doi.org/10.1587/transcom.2018EBR0002
https://doi.org/10.1007/s11235-016-0142-x
https://doi.org/10.1016/j.comcom.2017.06.004
https://doi.org/10.1016/j.comcom.2017.06.004
https://doi.org/10.1016/j.comcom.2018.05.005
https://doi.org/10.1016/j.comcom.2018.05.005
https://googleblog.blogspot.hu/2012/02/google-public-dns-70-billion-requests.html
https://googleblog.blogspot.hu/2012/02/google-public-dns-70-billion-requests.html
https://doi.org/10.1587/transcom.2016EBN0007
https://doi.org/10.1587/transcom.2016EBN0007

Performance evaluation of DNS servers to build a benchmarking system of DNS64 implementations

1 3

in Telecommunications, Electrotechnics, Signals and Systems,
7(1), 10–16. https:// doi. org/ 10. 11601/ ijates. v7i1. 255.

 13. Lencse, G. (2018). Enabling dns64perf++ for benchmarking the
caching performance of DNS64 servers. Journal of Computing
and Information Technology, 26(1), 19–28. https:// doi. org/ 10.
20532/ cit. 2018. 10040 78.

 14. Bakai, D. Dns64perf++: A C++14 DNS64 Tester”, source
code. https:// github. com/ bakaid/ dns64 perfpp.

 15. Lencse, G. Modified source files of dns64perf++, Available:
http:// www. hit. bme. hu/ ~lencse/ dns64 perfpp/.

 16. Free Software Foundation, “The free software definition”,
[Online]. Available: http:// www. gnu. org/ philo sophy/ free‑ sw.
en. html.

 17. Internet Systems Consortium, “BIND: Versatile, classic, com‑
plete name server software”, [Online]. Available: https:// www.
isc. org/ downl oads/ bind.

 18. EURid, “YADIFA”, [Online]. Available: https:// www. yadifa. eu/
about..

 19. NLnet Labs, „NSD”, [Online]. Available: https:// www. nlnet labs.
nl/ proje cts/ nsd/ about/.

 20. Michael Kerrisk, “The SO_REUSEPORT socket option”, March
13, 2013. LWN.net, [Online]. Available: https:// lwn. net/ Artic les/
542629/.

 21. NLnet Labs, “NLnet Labs Documentation – NSD – nsd.conf.5”,
[Online]. Available: https:// www. nlnet labs. nl/ docum entat ion/ nsd/
nsd. conf/.

 22. CZ.NIC, “Knot DNS”, [Online]. Available: https:// www. knot‑ dns.
cz/.

 23. Včelák, J. “Knot DNS 2.1.0 (final release)”, January 14, 2016,
[Online]. Available: https:// lists. nic. cz/ piper mail/ knot‑ dns‑ users/
2016‑ Janua ry/ 000771. html.

 24. Lencse, G., & Bakai, D. (2017). Design, implementation and per‑
formance estimation of mtd64‑ng a new tiny DNS64 proxy. Jour-
nal of Computing and Information Technology, 25(2), 91–102.
https:// doi. org/ 10. 20532/ cit. 2017. 10034 19.

 25. Lencse, G., & Shima, K. (2020). Performance analysis of SIIT
implementations: Testing and Improving the Methodology. Com-
puter Communications, 156(1), 54–67. https:// doi. org/ 10. 1016/j.
comcom. 2020. 03. 034.

 26. Herbert, T., de Bruijn, W. Scaling in the Linux Networking Stack.
[Online]. Available: https:// www. kernel. org/ doc/ Docum entat ion/
netwo rking/ scali ng. txt.

 27. Majkowski, M. How to receive a million packets per second. June
16, 2015. blog.cloudflare.com, [Online]. Available: https:// blog.
cloud flare. com/ how‑ to‑ recei ve‑a‑ milli on‑ packe ts/.

Gábor Lencse received MSc and
PhD in computer science from
the Buda‑pest University of
Technology and Economics,
Budapest, Hungary in 1994 and
2001, respectively. He has been
working for the Department of
Telecommunications, Széchenyi
István University, Győr, Hun‑
gary since 1997. Now, he is a
Professor. He has been working
part time for the Department of
Net‑worked Systems and Ser‑
vices, Budapest University of

Tech‑nology and Economics as a Senior Research Fellow since 2005.
His research area is the performance analysis of IPv6 transition
technologies.

Attila Pivoda received BSc in
electrical engineering from the
Széhenyi István University,
Győr, Hungary in 2019. He has
experience in managing wireless
ISP network with MikroTik,
Ubiquiti and Cisco devices since
2010, and he is currently work‑
ing for an ISP company as net‑
work engineer. In part time he
manages Linux based web host‑
ing servers and he does program‑
ming in HTML, PHP, MySQL.

Keiichi Shima is a deputy director
at the Research Laboratory of IIJ
Innova‑tion Institute, Inc. His
research field is the Internet,
including designing and imple‑
menting communication proto‑
cols, com‑puter networking tech‑
nologies, computer network
security, AI‑based anomaly
detection, and so forth. He also
works as a board member of the
WIDE project operating a nation
wide research network in Japan.

https://doi.org/10.11601/ijates.v7i1.255
https://doi.org/10.20532/cit.2018.1004078
https://doi.org/10.20532/cit.2018.1004078
https://github.com/bakaid/dns64perfpp
http://www.hit.bme.hu/~lencse/dns64perfpp/
http://www.gnu.org/philosophy/free-sw.en.html
http://www.gnu.org/philosophy/free-sw.en.html
https://www.isc.org/downloads/bind
https://www.isc.org/downloads/bind
https://www.yadifa.eu/about
https://www.yadifa.eu/about
https://www.nlnetlabs.nl/projects/nsd/about/
https://www.nlnetlabs.nl/projects/nsd/about/
https://lwn.net/Articles/542629/
https://lwn.net/Articles/542629/
https://www.nlnetlabs.nl/documentation/nsd/nsd.conf/
https://www.nlnetlabs.nl/documentation/nsd/nsd.conf/
https://www.knot-dns.cz/
https://www.knot-dns.cz/
https://lists.nic.cz/pipermail/knot-dns-users/2016-January/000771.html
https://lists.nic.cz/pipermail/knot-dns-users/2016-January/000771.html
https://doi.org/10.20532/cit.2017.1003419
https://doi.org/10.1016/j.comcom.2020.03.034
https://doi.org/10.1016/j.comcom.2020.03.034
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://blog.cloudflare.com/how-to-receive-a-million-packets/
https://blog.cloudflare.com/how-to-receive-a-million-packets/

	Performance evaluation of DNS servers to build a benchmarking system of DNS64 implementations
	Abstract
	1 Introduction
	2 Background information on benchmarking DNS64 servers
	2.1 Benchmarking methodology for DNS64 servers
	2.2 The operation of dns64perf ++ in a nutshell
	2.3 Size of the name space

	3 DNS implementations and their settings
	3.1 BIND
	3.2 YADIFA
	3.3 NSD
	3.4 Knot DNS
	3.5 FakeDNS

	4 Measurements
	4.1 Hardware and software environment
	4.2 Receive-side scaling
	4.3 Execution of the measurements
	4.4 Measuring further important quantities

	5 Results
	5.1 BIND
	5.2 YADIFA
	5.3 NSD
	5.4 Knot DNS
	5.5 FakeDNS
	5.6 Performance comparison
	5.7 Memory consumption and zone load time
	5.8 Recommendation for DNS64 benchmarking
	5.9 Discussion of FakeDNS
	5.10 Construction of a high performance DNS64 benchmarking system

	6 Plans for future research
	7 Conclusion
	Acknowledgements
	References

