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Abstract
DNS64 is an important IPv6 transition technology that facilitates the communication of an IPv6 only client with an IPv4 
only server, which becomes a more and more common scenario. Several different DNS64 implementations exist, and their 
performance is a relevant decision factor for network operators. RFC 8219 has defined a benchmarking methodology for 
DNS64 servers, which requires the operation of an authoritative DNS server at 220% of the query rate used for DNS64 
benchmarking. In this paper, we aim to build an authoritative DNS server that operates at 2.2 million qps (queries per 
second) rate, thus it facilitates DNS64 benchmarking up to 1,000,000 qps rate. To that end, we compare the performance 
of BIND, YADIFA, NSD, Knot DNS and FakeDNS (a special purpose software) to find the best suiting one of them. We 
fully disclose the details of our measurements including the configuration of the DNS implementations, the usage of our 
improved software tester called dns64perf ++, and the details of the hardware and software measurement environment 
in the NICT StarBED, Japan. We perform a series of measurements to examine, how the performance of the tested solutions 
scale up with the number of the active CPU cores from 1 to 32. Besides their performance, we also measure their memory 
consumption and zone load time. We present and discuss all the results. In addition to successfully building an authoritative 
DNS server with the required performance, we also make recommendations, which solutions suit to different special needs.
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1 Introduction

Currently, we are in a transition from IPv4 to IPv6 [1]. 
Unfortunately, these two versions of the Internet Protocol 
are not compatible with each other, and IETF has standard‑
ized several IPv6 transition technologies to facilitate their 
cooperation in various communication scenarios [2]. For 
example, DNS64 [3] servers and NAT64 [4] gateways are 
used to enable the IPv6 only clients to communicate with 
IPv4 only servers, which is going to be a more and more 
common scenario due to the deployment of IPv6 on the cli‑
ent side and the fact that some servers will remain IPv4 only 

for the foreseeable future. Network operators will need to 
choose the best suiting DNS64 implementations to their pur‑
poses from among several ones, and performance is one of 
the key decision factors. We have already published a paper 
about the performance comparison of four DNS64 imple‑
mentations in 2016 [5]. Then RFC 8219 [6] has defined a 
benchmarking methodology for IPv6 transition technologies 
including DNS64 in 2017. The benchmarking procedure for 
DNS64 servers, which we have described in more details in 
[7], requires the usage of a high performance authoritative 
DNS server during the benchmarking of DNS64 servers (we 
give more details in Sect. 2.1). The first author of this paper 
had the opportunity to measure the performance of three 
DNS64 implementations in an RFC 8219 compliant way as 
a guest researcher in Japan [8]. The tested implementations 
showed a moderate performance, which is very far away 
from the performance of the Google public DNS server, 
which is about 810,000 qps (query per second) on average 
[9]. Therefore, we set our goal to develop a high perfor‑
mance DNS64 server and to be able to benchmark DNS64 
implementations up to 1 million queries per second rate.
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The aim of our current effort is to build a high perfor-
mance authoritative DNS server that facilitates the bench‑
marking of DNS64 implementations up to 1,000,000 qps 
rate. To that end, we evaluate the performance of different 
authoritative DNS server implementations BIND, YADIFA, 
NSD, Knot DNS and FakeDNS (a special purpose software) 
to find the best candidate for our purpose. We also disclose 
the details of their configuration as well as the necessary 
settings of our test environment to be able to receive several 
millions of packets per second.

The remainder of this paper is organized as follows: In 
Sect. 2, we summarize all background information, including 
the highlights of DNS64 benchmarking, as well as the opera‑
tion of our testing tool and its improvements in a nutshell. 
In Sect. 3, we introduce the tested authoritative DNS server 
implementations and disclose their settings. In Sect. 4, we 
explain the details of the measurements. In Sect. 5, we report 
and discuss our results. In Sect. 6, we unfold our plans for 
future research. In Sect. 7, we give our conclusions.

2  Background information 
on benchmarking DNS64 servers

2.1  Benchmarking methodology for DNS64 servers

We have defined a benchmarking methodology for DNS64 
servers in Section 9 of RFC 8219 [6] and elaborated its 
details in [7]. Now we present only a very brief summary of 
it. The compulsory test of the DNS64 benchmarking proce‑
dure follows the test and traffic setup shown in Fig. 1. This 
is the “worst case” scenario, when all the following six mes‑
sages are used:

1. The Measurer subsystem of the Tester sends a query for 
an IPv6 address (“AAAA” record) of the domain name 
in question to the tested DNS64 server, which is the 
DUT (Device Under Test).

2. The DUT sends a query for an IPv6 address of the same 
domain name to the AuthDNS (Authoritative DNS 
Server) subsystem of the Tester.

3. The AuthDNS subsystem of the Tester replies with an 
empty “AAAA” record.

4. The DUT sends a query for an IPv4 address (“A” record) 
of the same domain name to the AuthDNS subsystem of 
the Tester.

5. The AuthDNS subsystem of the Tester replies with a 
valid “A” record.

6. The DUT synthesizes an IPv4-embedded IPv6 address 
[10] using either the NAT64 well‑known prefix or a net‑
work specific prefix plus the received “A” record, and 
then it returns the synthesized “AAAA” record to the 
Measurer subsystem of the Tester.

To eliminate caching, all different domain names must 
be used during the at least 60 s long testing. The tester 
sends the queries at a constant rate and checks the replies 
if they arrive within the required timeout time and contain 
a valid “AAAA” record. If yes, then the test is success‑
ful, otherwise it is failed. The DNS64 performance is the 
highest rate at which the test is successful. In practice, a 
binary search is used to find the highest such rate. And the 
binary search is to be executed at least 20 times, and the 
final result is the median of the at least 20 results, whereas 
their first and 99th percentiles are used to show the stabil‑
ity of the results.

To certify the Tester (including its both subsystems: 
Measurer and AuthDNS) for testing up to r rate with t 
timeout, a self‑test must be performed at 2.2*r rate and 
with 0.25*t timeout. In short, the rationale for 220% of 
the rate is that the AuthDNS subsystem has to serve two 
queries for each query to the DUT, and 10% is the perfor‑
mance reserve. As for the timeout, thus together the half 
of the time can be used up by the AuthDNS subsystem for 
serving the two queries, and the other half remains for the 
DUT. (Please refer to [6] and [7] for further details.)

As for our measurements, the 220% of the query rate 
means that the requirement for the Authoritative DNS 
server subsystem is 2,200,000 qps rate to be able to test 
the DNS64 servers up to 1,000,000 qps rate. As for time‑
out, we have shown it in [7] that it should be 1 s for the 
DNS64 servers and thus the timeout should be 250 ms 
for the Authoritative DNS server used to support DNS64 
benchmarking.

Fig. 1  Test and traffic setup for benchmarking DNS64 servers [11]
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2.2  The operation of dns64perf ++ in a nutshell

The operation of the original version of dns64perf ++ is 
described in detail in our open access paper [11], therefore, 
we only give a very short summary of it.

To be able to generate a high number of requests for all 
different domain names that can be described systematically, 
dns64perf ++ uses the following namespace: {0.0.255}‑
{0.0.255}‑{0.0.255}‑{0.0.255}.dns64perf.test. During 
DNS64 tests, these names are resolved to IPv4 address. 
(For example, 000‑001‑002‑003.dns64perf.test is resolved 
to 0.1.2.3.) A subset of the namespace to be used can be 
expressed by the IPv4 address range, which the domain 
names are mapped to. E.g. 10.0.0.0/8 means a name space of 
 224 size with the following names: 010‑{0.0.255}‑{0.0.255}‑
{0.0.255}.dns64perf.test.

However, for the self‑test of the tester, the domain names 
have to be resolved to IPv4‑embedded IPv6 addresses by 
the DNS server, because dns64perf ++ can send only 
requests for “AAAA” records. (The domain name in the 
above example can be mapped to 2001:db8::0.1.2.3.)

The task of the dns64perf ++program is to perform 
one elementary test, and a bash shell script is used to per‑
form the binary search and its 20 repetitions.

Originally, dns64perf ++ used only two threads 
(one thread for sending the queries and another thread for 
receiving the replies), and it was capable of testing up to 
200,000 qps rate [11]. When we tested its accuracy, we have 
discovered a bug in its timing algorithm, which made it unre‑
liable over about 50,000qps rate, and we have corrected 
it and rechecked its accuracy [12]. We have also enabled 
dns64perf ++ for benchmarking the caching performance 
of DNS64 servers [13], which is an optional test of RFC 
8219.

Dániel Bakai, the author of dns64perf ++, has made 
different developments on dns64perf ++ so that it can 
be used for benchmarking up to several million queries per 
second. The “multiport” feature [14] (latest commit d6fa119 
on Oct 8, 2018) includes all the following ones:

1. Usage of 2*n threads (n threads for sending queries 
and another n threads for receiving and processing the 
replies)

2. Usage of IPv4 as transport protocol. (For DNS64 testing, 
it has to communicate over IPv6, but we experienced 
higher self‑test performance over IPv4, therefore we 
used IPv4 in our experiments.)

3. Usage of multiple source port numbers. We need it for 
RSS (Receive Side Scaling), please refer to Sect. 4.2.

Besides his development, we also added a further feature 
that pins the threads to given CPU cores using the function 
pthread_setaffinity_np(), to avoid their wandering 

among CPU cores. Our modified source code is available 
from [15].

2.3  Size of the name space

The size of the name space was determined to be “/5”, which 
corresponds to  227 = 134,217,728 different domain names, 
and it is enough up to 2,236,962 qps rate, if the test last for 
the required 60 s.

3  DNS implementations and their settings

In this section, we enumerate the selected authoritative DNS 
server implementations, give the reasons for their selection 
and disclose their settings. We have considered only free 
software [16] implementations for the same reasons as given 
in Sect. 3 of [5].

3.1  BIND

BIND of ISC [17] is the most popular DNS server imple‑
mentation, therefore it was a must to be included in our 
benchmarking.

We have tested its two different versions. The 
9.10.3‑P4‑Debian version, which was included in our Debian 
distribution, and also its version 9.12.4, which was down‑
loaded in source and compiled with the --with-tun-
ing = large option to test their performance difference.

Its configuration was very simple, the following lines 
were appended to the /etc/bind/named.conf.
local file:

3.2  YADIFA

YADIFA of EURid is told to be one of the lowest memory 
footprint authoritative DNS server [18]. We have success‑
fully used it to support DNS64 benchmarking and we expe‑
rienced that it outperformed BIND [8]. For our current pro‑
ject, we used its 2.2.3–6237 version, which was included in 
our Debian distribution. Its configuration was very simple, 
we added the following lines to /etc/yadifa/yadi-
fad.conf:
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In addition to that, we had to copy the zone file to /var/
lib/yadifa.

3.3  NSD

The NSD of NLnet Labs was optimized for serving high 
number of requests per second [19]. We used its 4.1.14 ver‑
sion, which was included in our Debian distribution.

NSD supports the SO_REUSEPORT socket option [20], 
which improves performance of the network stack on a 
multi‑core computer if server-count is set to higher 
than 1 [21].

Its zone file was configured by adding the following lines 
to the /etc/nsd/nsd.conf file:

Unlike BIND and YADIFA, NSD can utilize only a single 
CPU core, unless the required number of processes is explic‑
itly specified by the server-count option. Therefore, 
we always set this value to the number of active CPU cores.

3.4  Knot DNS

Knot DNS of CZ.NIC is a modern, high performance DNS 
server [22]. Knot DNS also supports the SO_REUSEPORT 
socket option, and it does not need to be enabled in the con‑
figuration file, as it is enabled by default [23].

Its configuration was very simple, the following lines 
were added to /etc/knot/knot.conf:

3.5  FakeDNS

FakeDNS is a special purpose program developed by Dániel 
Bakai using the code base of the mtd64-ng DNS64 server 
to eliminate the need for an authoritative DNS server, when 
performing DNS64 benchmarking [24]. FakeDNS does not 

use a zone file, and it can serve only the name space used by 
dns64perf ++: it simply takes the information from the 
first label (e.g. 000‑001‑002‑003) to calculate the appropri‑
ate IPv4 address (e.g. 0.1.2.3). As it does not use a zone 
file, it starts very fast and it uses only a very low amount of 
memory. Similarly to mdt64-ng, FakeDNS is also multi‑
threaded. As it did not provide the required performance 
during our preliminary measurements, Dánial Bakai has 
developed an experimental feature, called as “moreproc”. 
It starts a separate process for every single CPU core, and 
a modified version of iptables is used to distribute the 
requests among the processes.

FakeDNS was configured in /etc/fakedns.conf 
as follows:

As dns64perf ++ sends its requests to port 53, we 
used a special kernel module and iptables patch pre‑
pared by Dánial Bakai, which could rewrite the destination 
port numbers in the requests and the source port number in 
the replies. The requests were distributed equally among the 
fakedns processes using the nth mode of the statis-
tics module of iptables.

4  Measurements

4.1  Hardware and software environment

The measurements were carried out using the resources of 
the NICT StarBED, Japan. The measurement setup is shown 
in Fig. 2. Dell PowerEdge R430 servers were used both as 
the Tester and as the DUT (Device Under Test). They had 
two 2.1 GHz Intel Xeon E5‑2683 v4 CPUs having 16 cores 
each, 384 GB 2400 MHz DDR4 RAM and Intel 10G dual 
port X540 network adapters. They were interconnected by 
a 10 Gbps VLAN.

Debian Linux 9.6 with kernel version 4.9.0‑8‑amd64 was 
installed on both computers.

Based on our benchmarking experience [8] and [25], 
we switched off Hyper‑Threading on both computers to 
achieve consistent results. Turbo Boost was left enabled 
on the Tester, but it was switched off on the DUT to avoid 
the influence of the power budget on the scale up tests 
(see below). Thus the CPU clock frequency of the Tester 
could theoretically vary from 1.2 to 3 GHz, but power 
budget limited it to 2.6 GHz, when all cores were used by 
dns64perf ++. The CPU clock frequency of the DUT 
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could vary from 1.2 to 2.1 GHz. The CPU clock frequency 
scaling governor was set to “performance” for all active 
CPU cores on both computers.

We wanted to know, how the performance of each DNS 
implementation scales up with the number of CPU cores. 
To set the required number of active CPU cores, we used 
the maxcpus = N kernel parameter to activate N number 
of CPU cores at boot time. We tested with 1, 2, 4, 8, 16 
and 32 active CPU cores.

4.2  Receive‑side scaling

In the past network interfaces used only a single queue for 
forwarding the packets from the hardware to the operating 
system kernel. This solution limited the processing of the 
received packets to a single CPU core, which became a 
bottleneck. RSS (Receive‑Side Scaling) [26], (also called 
multi-queue receiving) can efficiently distribute the incom‑
ing packets among the CPU cores, thus increasing the per‑
formance of the networking stack. In practice, the NICs 
(Network Interface Cards) use a hash value to distribute 
the incoming packets into the queues, that is, to assign 
them to the CPU cores. By default, only the source and 
destination IP addresses are used to compute the hash 
value. In real life, there are a high number of different 
source IP addresses can be found in the requests arriving 
to a DNS server. However, in our case, they were all the 
same. The Intel X540‑AT2 adapters of our servers facili‑
tated the usage of the four tuple (source IP address, des‑
tination IP address, source port number, destination port 
number). Therefore, we enabled this feature both on the 
Tester and on the DUT by the following command:

This setting was a prerequisite to be able to test up to 2.2 
million query per second rate [27].

4.3  Execution of the measurements

A single execution of the dns64perf ++ program can be 
used to decide, if the system can serve all the requests at the 
specified rate during the 60 s long time interval required 
by RFC 8219. The highest such rate can be determined by 
a binary search. As for DNS64 measurements, RFC 8219 
requires to execute the binary search at least 20 times, and 
the final result is the median of the 20 results, whereas the 
first percentile and the 99th percentile are used to express 
the indices of dispersion, which are the minimum and maxi‑
mum, if the number of repetitions of the binary search is 
less than 100.

The binary search and its 20 repetitions were imple‑
mented by a bash shell script. The upper limit of the binary 
search was set to 2,236,962 qps, and the 8.0.0.0/5 name 
space was used for the measurements.

Independently from the number of active CPU cores of 
the DUT, always all 32 core were used on the Tester, and 
both the number of sending and receiving threads were 
always 16. The number of source port numbers per sending 
thread were set to 2048, to facilitate an even distribution of 
the arriving packets among the CPU cores.

4.4  Measuring further important quantities

DNS resolution performance is definitely the most impor‑
tant decision factor, but some other quantities may also be 
important, when selecting the most suitable implementa‑
tion to support DNS64 benchmarking. Not to interfere with 
the benchmarking tests, we have measured separately the 
memory consumption of the different authoritative DNS 
server implementations as well as the load time of a “/5” 
size zone file.

5  Results

First, we disclose and evaluate the performance of the differ‑
ent implementations one by one focusing on the scale up of 
their performance, and then we make a comparison.

In addition to that, we also expose the memory consump‑
tion and start up time of the different DNS implementations.

Fig. 2  Measurement setup for benchmarking authoritative DNS serv‑
ers
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5.1  BIND

The domain name resolution performance of BIND 
9.10.3‑P4‑Debian is shown in Fig. 3. (The columns show 
the median of the 20 results, and the error bars show the first 
and 99th percentiles.) As for the scale up of the performance 
of BIND, there is a strange phenomemon at four cores. 
Unlike with any other number of CPU cores, at four cores, 
the performance is not doubled compared to two cores, but 
it is even lower than that. We have found its root cause by 
checking the number of started UDP listeners in the /var/
log/syslog file. At one and two cores, the number of 
UDP listeners was equal with the number of active CPU 
cores, however, from 4 cores, the number of UDP listeners 
was only the half of the number of active CPU cores. Thus 
the number of listeners beacame a bottleneck at four active 
CPU cores.

The domain name resolution performance of BIND com‑
piled with the --with-tuning = large option is shown 
in Fig. 4. On the one hand, the single core performance 
increased drastically from 10,564 to 57,670 qps compared 
with the previous case, however, on the other hand, there are 
problems with the scale up. The phenomenon that the per‑
formance did not increase from one to two active CPU cores 
can be explained by the fact that BIND used a single UDP 
listener in both cases. From four active CPU cores, BIND 
used one less UDP listeners than the number of active CPU 
cores. Unfortunately, the performance showed decrease from 
16 to 32 cores. The high difference between the first percen‑
tile and the 99th percentile of the results from 4 to 32 cores 
is another issue. (We need to consider the first percentile for 
DNS64 benchmarking.)

We did not do any further performance tuning and we did 
not go into deeper analysis of the behavior of BIND, as our 
purpose was to find an implementation which suited to our 
needs and BIND was deliberately far from it.

5.2  YADIFA

The domain name resolution performance of YADIFA 
2.2.3–6237 is shown in Fig. 5. On the one hand, YADIFA 
showed a good single core performance (154,800 qps), but 
on the other hand its performance scaled up very poorly 
with the number of active CPU cores, which is a funda‑
mental problem in the case of our current multi‑core CPUs. 
(It also showed significantly scattered results at two active 
CPU cores.) Thus YADIFA is definitely not a candidate for 
our purposes.

5.3  NSD

We have performed two measurement series with NSD. In 
the first case, RSS was set to include the source and des‑
tination port numbers in the hash value, as described in 
Sect. 4.2. In addition to that, we have also performed another 
measurement series excluding the port numbers from the 
hash to demonstrate the difference.

Fig. 3  The domain name resolution performance of BIND 
9.10.3‑P4‑Debian as a function of the number of active CPU cores

Fig. 4  The domain name resolution performance of BIND 9.12.4 
compiled with the --with-tuning = large option as a function 
of the number of active CPU cores

Fig. 5  The domain name resolution performance of YADIFA 2.2.3–
6237 as a function of the number of active CPU cores
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The domain name resolution performance of NSD 4.1.14 
with properly set RSS is shown in Fig. 6. NSD has shown 
an excellent performance, having both a high single core 
performance (188,872 qps) and very also a good scale up. 
We mention that its median performance has reached the 
upper limit of the binary search at 32 active CPU cores, but 
its DNS64 benchmarking relevant performance (that is the 
1st percentile) was not limited by the size of the zone file.

The domain name resolution performance of NSD 4.1.14 
with default RSS is shown in Fig. 7. As expected, its perfor‑
mance was limited by the packet receiving performance of 
a single CPU core. We note that the CPU core, which pro‑
cessed all the packet arrivals (interrupts) was not excluded 
from the operation of NSD. (We did not want to do any 
tuning, our only purpose with this experiment was to dem‑
onstrate the need for the properly set RSS.)

5.4  Knot DNS

The domain name resolution performance of Knot DNS 2.4.0 
is shown in Fig. 8. It has shown an excellent performance 

with any number of CPU cores, and its median performance 
at 32 cores was significantly limited by the size of the zone 
file, but the first percentile was “only” 2,236,824 qps. Even 
though its results were significantly scattered at 16 active 
cores, the first percentile of its results was definitely higher 
than our targeted 2.2 Mqps at 32 cores.

5.5  FakeDNS

The performance of FakeDNS is shown in Fig. 9. It both 
showed a good single core performance and it scaled up 
quite well, though it produced significantly scattered results 
(especially at 16 active CPU cores).

5.6  Performance comparison

We have compared the DNS64 benchmarking relevant per‑
formance of the different solutions, that is, the first percen‑
tiles of the results of their 20 tests in Fig. 10.

In general, Knot DNS and NSD have shown the best 
performance and the third one was FakeDNS. Knot DNS 
has outperformed NSD at 32 cores, and it was the only 

Fig. 6  The domain name resolution performance of NSD 4.1.14 with 
properly set RSS as a function of the number of active CPU cores. 
(Its median performance at 32 cores was limited by the size of the 
zone file.)

Fig. 7  The domain name resolution performance of NSD 4.1.14 with 
default RSS as a function of the number of active CPU cores

Fig. 8  The domain name resolution performance of Knot DNS 2.4.0 
as a function of the number of active CPU cores. (Its median perfor‑
mance at 32 cores was limited by the size of the zone file.)

Fig. 9  The performance of FakeDNS as a function of the number of 
active CPU cores
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implementation that achieved 2.2 Mqps, thus it is our num‑
ber one recommendation. But NSD was somewhat better at 
lower number of cores, and NSD with default RSS is defi‑
nitely the best choice, when only a single CPU core can be 
used.

Both BIND and YADIFA have shown low performance. 
BIND suffered from very low single core performance (its 
bar is hardly visible at a single CPU core in Fig. 10), and the 
performance of YADIFA scaled up poorly.

For our final recommendation, we need to consider also 
some other decision factors, which we address in the next 
subsection.

5.7  Memory consumption and zone load time

The memory consumption of the tested authoritative DNS 
servers with a “/5” size zone is shown in Fig. 11. YADIFA 
has shown the lowest memory consumption (23 GB), which 
complies with the claim of its developers that YADIFA is a 
low memory footprint server. However it cannot utilize the 
entries of such a large zone file in a 60 s long test. On the 
other hand, NSD required the highest amount of memory, 
38.1 MB, which is still affordable, if the server has at least 
64 MB of RAM.

The load time of the tested authoritative DNS servers 
with a “/5” size zone is shown in Fig. 12. It is important 
to mention that NSD (with its default settings) prepares a 
binary zone file at the time of its first start. Using a “/5” size 

Fig. 10  Comparison of the DNS64 benchmarking relevant performance of the different solutions

Fig. 11  Comparison of the memory consumption of the different 
authoritative DNS server implementations. (Lower is better.)
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zone, this binary zone file occupied 84.1 GB disk space, and 
we stored it on a RAM‑drive. The initial load time of NSD 
was 657 s and the subsequent ones were only 210 s. (If the 
binary zone file is stored on a hard drive, the subsequent 
zone loads last much longer due to the lower disk reading 
speed.) The second fastest one was Knot DNS (315 s).

5.8  Recommendation for DNS64 benchmarking

All in all, we recommend Knot DNS as authoritative DNS 
server to support DNS64 benchmarking up to 1,000,000 qps 
rate.

When somewhat lower rates are satisfactory, NSD and 
FakeDNS can also be good choices. FakeDNS is the best 
choice, if there is not enough memory in the server, or if 
very fast start is needed. (Please see further explanation in 
Sect. 5.7.)

When only a single CPU core is available for the authori‑
tative DNS server, NSD with default RSS can provide the 
highest performance.

5.9  Discussion of FakeDNS

First of all, we note that FakeDNS is only a byproduct of 
mtd64-ng, an experimental DNS64 server [24].

Our result that the performance of FakeDNS is lower than 
that of NSD or Knot DNS can be explained by the fact that 
FakeDNS has to convert the 4 times 3 decimal digits of the 
first label of the DNS query to an unsigned 32‑bit integer 
(IPv4 address), whereas the real authoritative DNS servers 
can read the IPv4 address directly from the memory. NSD 
and Knot DNS are good examples that the latter solution 

may be faster. BIND and YADIFA are good examples for 
the opposite case.

We believe that there is room for FakeDNS in DNS64 
benchmarking. If the servers used for benchmarking are 
shipped with only 32 GB of memory, the zone file cannot 
be loaded into the memory without swapping, but swapping 
is unacceptable due to its performance penalty. Even if there 
is enough memory, the fast start of the test system may be 
attractive, and thus FakeDNS can be a good choice, when 
its performance is enough.

5.10  Construction of a high performance DNS64 
benchmarking system

Following the method of using three devices for DNS64 
benchmarking (that is, the Measurer and the AuthDNS 
subsystems of the Tester are implemented by two separate 
devices), originally invented and disclosed in Fig. 6. of [7] 
and also used in Fig. 2 of [8], we have constructed a meas‑
urement setup for benchmarking DNS64 servers as shown in 
Fig. 13. The selected authoritative DNS server implementa‑
tion is executed by node p093, and it is to be configured as 
described in Sect. 3 of our current paper. It is important to 
set RSS so that it considers also the source and destination 
port numbers for both IPv4 and/or IPv6 an all interfaces 
used for measurements. We note that the “link” on the right 
side of the figure serves only the purpose of checking the 

Fig. 12  Comparison of the load time of a “/5” size zone of the differ‑
ent solutions. (Lower is better.)

Fig. 13  Measurement setup for benchmarking DNS64 servers
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performance of the authoritative DNS server, and it is not 
used during DNS64 benchmarking. (RFC 8219 requires 
to perform the self‑test of the Tester, before it is used for 
benchmarking DNS64 servers.)

6  Plans for future research

Our plans for future research include the further develop‑
ment of mtd64-ng our tiny DNS64 proxy [24] and its 
benchmarking, which became feasible by our current results.

7  Conclusion

We have selected the following free software authoritative 
DNS server implementations as potential candidates for sup‑
porting DNS64 benchmarking: BIND, YADIFA, NSD, Knot 
DNS, plus a special purpose software called FakeDNS.

We have built a suitable test system for benchmarking the 
selected solutions, and we have compared their performance, 
memory consumption, and zone file load time.

We have found that Knot DNS can be used to support 
DNS64 benchmarking up to 1,000,000 qps rate.

When lower rates are satisfactory, NSD and FakeDNS are 
also good choices. FakeDNS is the best choice, if there is not 
enough memory in the server, or if very fast start is needed.

When only a single CPU core is available for the authori‑
tative DNS server, NSD with default RSS can provide the 
highest performance.
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