
Catching Unusual Traffic Behavior
using TF–IDF-based Port Access Statistics Analysis

Keiichi Shima
Internet Initiative Japan

keiichi@iijlab.net

Abstract—Detecting the anomalous behavior of traffic is one
of the important actions for network operators. In this study,
we applied term frequency – inverse document frequency (TF–
IDF), which is a popular method used in natural language
processing, to detect unusual behavior from network access logs.
We mapped the term and document concept to the port number
and daily access history, respectively, and calculated the TF–IDF.
With this approach, we could obtain ports frequently observed
in fewer days compared to other port access activities. Such
access behaviors are not always malicious activities; however,
such information is a good indicator for starting a deeper analysis
of traffic behavior. Using a real-life dataset, we could detect two
bot-oriented accesses and one unique UDP traffic.

Index Terms—Internet traffic, anomaly detection, TF–IDF

I. INTRODUCTION

Traffic monitoring and anomaly detection are vital oper-
ations for network operators. If we see access to a certain
port that has not been seen before, then we may infer it
to be a new type of attacking or an attacking symptom. Of
course, judging whether such activity is malicious behavior
is not always possible. It may possibly be simply a random
side effect caused by normal operations or mistakes. However,
despite the fact that whether that activity is a real attack, it
is important for network operators to notice such a behavioral
change as soon as possible.

There have been many past approaches that inform us of
such a change. The simplest mechanism is the time-series
traffic volume-based anomaly detection. It works well when
we want to detect a large-scale traffic anomaly such as
DoS/DDoS; however, detecting smaller malicious activities is
difficult.

In this paper, we seek a method to obtain irregular behavior
of port access statistics using a natural language processing
scheme, term frequency – inverse document frequency (TF–
IDF). With this approach, we could distinguish interesting port
access activities from other activities.

II. TF–IDF FOR PORT ACCESS STATISTICS

TF–IDF is a popular method for obtaining important words
from documents based on a statistical analysis of the occur-
rence of each word. It calculates a value of a word in a docu-
ment considering both the word frequency in the document and

© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

the popularity of the word in all the documents. We reuse this
idea for the analysis of port access statistics. A port number
is considered as a “word”, and the number of access to the
port is considered to be the number of occurrences of the
word. The port access statistics for one day are treated as one
“document”. Thus, a document can contain a maximum of
65,535 different words. The number of documents is the same
as the number of days we collected the port access statistics.
If we obtain considerable access to a specific port, the TF
(Term Frequency) value then increases, indicating that the
port is more popular than other ports. However, if the port is
observed on many different days, the IDF (Inverse Document
Frequency) value of the port becomes smaller, and the final
TF–IDF value will be small.

III. DATASET

We used traffic data for a specific range of IPv4 address
blocks collected by the NICTER1 project [1], a packet moni-
toring project operated by the National Institute of Information
and Communications Technology (NICT)2 as the target traffic.
The target traffic we selected covers a time period from July
2020 to September 2020. There are several different types of
transport protocols seen in the dataset; however, we only focus
on TCP and UDP herein.

IV. DATA CLEANSING

Although our approach is straightforward, it does not pro-
vide reasonable results as far as we just simply use the raw
port access statistics data. We need to consider two things
when applying TF–IDF to network traffic. One is how to select
stop words, the other is how to filter noise. These topics are
discussed in the following subsections.

A. Selecting stop words

When using TF–IDF for natural language documents, we
remove stop words from the documents. Stop words are words
frequently appear in the documents, but have no important
meaning in the analysis context, such as “a” or “the” in
English.

Internet traffic has a huge bias with regard to the usage
of ports. For example, ports 80 and 443 are mostly used for
web access and currently one of the major types of Internet
traffic. Almost all of the Internet services are built on top of

1https://www.nicter.jp/en
2https://www.nict.go.jp/en/index.html



TABLE I: TCP port access ratio in the dataset (top 10)

Port number Ratio Mainly used by
445 0.101 Windows File Sharing
23 0.071 TELNET

1433 0.026 SQL Server
22 0.022 SSH
21 0.019 FTP
80 0.015 HTTP

1723 0.010 PPTP
5555 0.009 Android Debug Bridge

81 0.008 HTTP alternative
8080 0.008 HTTP alternative / Proxy

web technology. As a result, the access counts to these web
related ports tend to be big. In this study, we do not focus
on detection of anomaly behavior hidden in the large amount
of traffic using such ports. Instead, we focus on other ports
activities often used by IoT-based malware.

Table I shows the ratio of TCP port access statistics of the
dataset we used.

In the case of the dataset used herein, we excluded ports
445, 23, 22, 80 81, 8080, and 443. Not all the ports listed
in Table I were excluded; instead, the port not shown in the
table (port 443) was excluded. The selection of excluded ports
was not fully systematic. We decided on them based on our
heuristic knowledge.

B. Noise filtering

The core idea of TF–IDF is that the frequency of terms
depends on the document content. As a result, when we apply
TF–IDF to text documents, we will have different IDF values
for terms when we have a wide variety of documents. In the
context of text processing, we normally apply data cleansing
operations. For example, the word “a” or “the” is removed
before applying TF–IDF, as such words are quite common
in all documents and it does not make much sense when
calculating the IDF values of terms.

Here we applied TF–IDF to the network port access history.
A port number is a word, and a one-day access history is a
document. In the network access log, especially when the scale
of a network is large, most of the ports are observed daily. We
face several scanning attacks almost every day. In some cases,
such activities scan the entire port space. As a result, if we do
not preprocess the raw access data, then we will see all the
documents (one-day access history) have logs of all the ports.
In this case, the IDF values for each port will have the same
value, and the TF–IDF calculation loses any meaning.

To avoid this effect, we filtered out ports that have only
a small number of access histories in one day from its daily
access log. For example, assume that we have a threshold value
of 1,000 accesses per day. If we see the number of accesses
less than 1,000 to port X, then we consider that port X does
not appear on that day. The threshold value depends on the
amount of traffic and/or the usage of the network. This process
can be considered as a kind of a simple noise filtering.

The goal of our analysis is to obtain “interesting” ports
from access logs using the TF–IDF mechanism. To focus on
such ports, we try to maximize the number of ports (which

(a) Threshold 1,000 (b) Threshold 2,000

(c) Threshold 4,000 (d) Threshold 8,000

Fig. 1: Histograms of IDF values with different threshold
values

are equivalent to terms in a text processing context) having
larger IDF values. To do this, we calculate the histogram of
IDF values with different threshold values of minimum access
numbers.

Figure 1 shows the histograms of IDF value using different
threshold values. The target data contains 30 days of access
history, indicating 30 documents in the TF–IDF context. When
a port is observed only in one day, the IDF value of the port
will have the maximum value of 3.70..., as shown below.

IDF = log

✓
NumberOfDocuments

DocumentFrequency + 1

◆
+ 1

= log(30/(1 + 1)) + 1

= 3.70...

If the threshold value is too small, we will see more minor
ports in the access logs and we see fewer ports having higher
IDF values. On the contrary, if we use a large threshold value,
such minor ports are completely removed from the access logs,
and we may miss the activities of minor ports. In Figure 1,
we used 4 different threshold values and we can confirm that
the maximum number of ports having the largest IDF values
can be observed when we use a threshold value of 4,000.

In the analysis parts described in the later sections, we use
the above approach to determine the minimum threshold value.
We start the value from 1,000 and calculate the histogram of
the IDF values. Subsequently, the threshold value is doubled,
and the histogram is recalculated. We stop the calculation
when we see a decreasing trend in the maximum number of
ports with the largest IDF value.

V. TF–IDF RESULTS

In this section, we present some of the results of our
TF–IDF-based port statistics analysis. As described in Sec-
tion IV-A, we exclude some of the port numbers treated as
stop words in the dataset. The access logs of these ports were
entirely removed from access history. In addition, as described



in Section IV-B, ports having only a small number of accesses
in one day are removed from the access log of that specific
day.

The number of days (the number of documents in the TF–
IDF context) to calculate the TF–IDF values was 30. When
calculating the TF–IDF values of August 1, we used the access
logs from July 3 to August 1. We calculated the TF–IDF values
of each port from August 1 to September 30 and checked the
access history of the ports that had high TF–IDF values. The
reason why we uses a sliding window-based approach is that
anomaly behavior has short-term trend. We focus on activities
of recent days (30 days in our study) to be able to find fresh
events useful for a continuous daily operation.

A. TCP port 9530

Figure 2 shows the past 30 days of access history of the top-
5 TF–IDF values of TCP ports on August 3. We observe that
the traffic on TCP port 9530 suddenly increased. The history
shows that the activity started around July 30.

Figure 3 shows the access history of TCP port 9530 from
July to September. The port is known as the port used by the
subspecies of the Mirai bot, a well-known malware targeting
mainly IoT devices [2]. The number of accesses to the port
9530 started increasing from the end of July, had a peak
value in the middle of August, and gradually disappeared by
the end of September. Such an activity related to the port
9530 is not a rare case. If we check the past access logs,
we could find that traffic to port 9530 was observed several
times. For example, one of the web reports mentions that a
similar activity happened in February 20203. Despite this fact,
we argue that it is still worth finding such re-activated cases.

The blog article also mentions a special characteristic of
Mirai-based malware. The original Mirai software uses the
same value for the destination IP address and the TCP initial
sequence number when creating the first TCP packet. We also
confirmed that the packets captured in our dataset had the
same characteristics. This fact implies that we could conclude
that the activity observed in August was related to the Mirai
subspecies with high probability.

B. TCP port 8291

Figure 4 is another example observed on September 15. On
this day, the TCP port 8291 was listed as the port with the
fifth-highest TF–IDF value. Figure 5 shows the activity of the
port from August to October. We can observe the access to
that port started increasing around September 8 and stopped
around October 5. This port is known as the port used by the
RouterOS produced by MikroTik. Some versions of the OS
have vulnerability [3] reported as CVE-2019-39784. In 2020,
we observed the increase of access to port 8291 a few times,
and this activity is considered one of them.

3D4 Project Blog: https://www.d4-project.org/2020/03/06/analyzer-d4-isn.
html

4CVE-2019-3978: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-3978

C. UDP Waves

The previous sections discussed the two TCP ports found
by our proposed methods. We also analyzed UDP port access
history. In the case of UDP, we did not find any specific
trend of increased port numbers at a specific time frame;
however, we observed that mysterious UDP accesses exist in
the dataset. Figure 6 shows the ports which TF–IDF values
were largest during August 1 and 5. As indicated by the TF–
IDF value, these ports were observed mainly on that day. For
example, the large amount of access to the UDP port 58246
was mostly observed on August 1 (and August 2, which is
although not shown in the paper), the UDP port 51455 was
observed mostly on August 2 (and August 3), and so on.
Figure 7 shows the hourly access history of the port numbers
shown in Figure 6 from August 1 to 5. Access to a specific
port starts daily at 09:00 in Japanese Standard Time (00:00 in
UTC) and continues for 24 h. After finishing the access to the
specific port, the other access to a different UDP port number
starts and continues for 24 h. Interestingly, the port number
was changed precisely at 09:00 JST (00:00 UTC) daily. This
implies that the traffic was controlled by software. It is also
interesting that the amount of hourly traffic is not constant and
made a waveform. This implies that the activity was based on
social activities such as day–night trends, working hours, or
similar activities.

As the dataset is captured by the network operated as a
darknet, we could not identify what type of communication
was expected to these UDP accesses because we did not
send any response to the incoming UDP packets. We tried
investigating the contents of the UDP packets; however, the
facts we could achieve were not many.

The source IP addresses of the incoming UDP packets were
quite random, so we could guess that the source addresses
were spoofed (perhaps some of them were correct source
addresses, but we do not know how to verify the source IP
addresses). Figure 8a shows a heatmap of the number of source
IP addresses sent to TCP port 58246 from August 1 and 2. The
figure is drawn as a Hilbert curve, and each block indicates
a /8 address block. The source IP addresses are distributed to
the entire unicast IPv4 address space.

The size of the payload of the incoming UDP packets
seemed to be random, ranging from 65 to 226 bytes. Figure 8b
shows the distribution of payload size. We briefly checked the
contents of the payload; however, it seemed to be random
bytes. There is a possibility that these data are some type
of encoded control commands to the machines infected by
malware; however, verifying the fact within our dataset is not
possible.

The source port numbers are almost set to 50,000 or
larger, as shown in Figure 8c. This range is normally used
for ephemeral ports [4]. In that sense, the packet generator
of this UDP wave phenomenon respects the RFC standard
recommendation, indicating that the generator probably uses
normal packet generation APIs provided by the operating
system.



Fig. 2: Past 30 days of access histories of ports listed as top-5 TF–IDF values on August 3, 2020

Fig. 3: Access history of TCP port 9530 from July 1 to September 30, 2020

Fig. 4: Past 30 days of access histories of ports listed as top-5 TF–IDF values on September 15, 2020

Fig. 5: Access history of TCP port 8291 from September 1 to October 31, 2020

Fig. 6: Access histories of the UDP ports with the largest TF–IDF values from August 1 to 5, 2020

Fig. 7: Combined access history of the UDP ports with the largest TF–IDF values from August 1 to 5, 2020



Distribution of source IPs
0.0.0.0/8

~ 63.0.0.0/8

64.0.0.0/8
~ 127.0.0.0/8

192.0.0.0/8
~ 223.0.0.0/8

Reserved
& Multicast

128.0.0.0/8
~ 191.0.0.0/8

(a) Heatmap of the
source IP blocks in /8
using a Hilbert curve

(b) Distribution of the payload
size

(c) Distribution of the source
port numbers

Fig. 8: The characteristics of the UDP wave traffic sent to the TCP port 58246 on August 1 and 2, 2020

VI. RELATED WORKS

The simplest way to obtain anomaly behavior based on
time-series data is a threshold-based approach. This works
well when the range of counts is predictable. On the Internet,
the number of incoming packets is not under our control, and
setting a proper threshold is impossible.

The k-nearest neighbor and ARIMA are popular methods
for detecting anomalies without knowing the normal range of
the target time-series data [5]–[10]. These approaches work
well when a series of data continuously takes similar values.
The port count data is, however, a spiky data series, and the
range of the counts is sometimes unstable. We can ease these
spikes by using a moving average or summing up the one-day
data to make the data almost stable time-series data; however,
we eventually see many anomaly results with these approaches
because they do not consider how important each port count is
compared to other port counts. The TF–IDF-based approach
shows the relative importance among the port counts based on
the frequency of port appearance.

VII. CONCLUSION

We applied the TF–IDF algorithm, which is used in a
natural language processing context, for observing the port
access trend of Internet traffic. Using the real-life dataset,
we identified two anomaly TCP port access behaviors and
one periodical UDP access behavior from the dataset. As
the proposed mechanism gives us a weighted order based
on the popularity of port access frequency, we can focus on
more important activities than using simple change detection
mechanisms for each port activity. It is true that there is
no single best mechanism to identify malicious activities;
however, we hope that our approach can be a collaborative
algorithm to obtain anomaly behaviors in conjunction with
other approaches.

ACKNOWLEDGMENT

We thank the NICTER project and the WIDE project5 for
supporting our work.

5https://www.wide.ad.jp/index e.html

REFERENCES

[1] D. Inoue, M. Eto, K. Yoshioka, S. Baba, K. Suzuki, J. Nakazato,
K. Ohtaka, and K. Nakao. nicter: An incident analysis system toward
binding network monitoring with malware analysis. In 2008 WOMBAT

Workshop on Information Security Threats Data Collection and Sharing,
pages 58–66, 2008.

[2] Manos Antonakakis et al. Understanding the Mirai Botnet. In USENIX

Security, pages 1093–1110, 2017.
[3] Joao M. Ceron, Christian Scholten, Aiko Pras, Elmer Lastdrager, and Jair

Santanna. Characterising attacks targeting low-cost routers: a mikrotik
case study (extended), 2020.

[4] Michael Larsen and Fernando Gont. Recommendations for Transport-
Protocol Port Randomization. RFC 6056, January 2011.

[5] Shengchu Zhao, Wei Li, Tanveer Zia, and Albert Y. Zomaya. A
dimension reduction model and classifier for anomaly-based intru-
sion detection in internet of things. In 2017 IEEE 15th Intl Conf

on Dependable, Autonomic and Secure Computing, 15th Intl Conf

on Pervasive Intelligence and Computing, 3rd Intl Conf on Big

Data Intelligence and Computing and Cyber Science and Technology

Congress(DASC/PiCom/DataCom/CyberSciTech), pages 836–843, 2017.
[6] Ming-Yang Su. Real-time anomaly detection systems for denial-of-

service attacks by weighted k-nearest-neighbor classifiers. Expert

Systems with Applications, 38(4):3492–3498, 2011.
[7] H. Zare Moayedi and M.A. Masnadi-Shirazi. Arima model for network

traffic prediction and anomaly detection. In 2008 International Sympo-

sium on Information Technology, volume 4, pages 1–6, 2008.
[8] Asrul H. Yaacob, Ian K.T. Tan, Su Fong Chien, and Hon Khi Tan.

Arima based network anomaly detection. In 2010 Second International

Conference on Communication Software and Networks, pages 205–209,
2010.

[9] Eduardo H. M. Pena, Marcos V. O. de Assis, and Mario Lemes Proença.
Anomaly detection using forecasting methods arima and hwds. In 2013

32nd International Conference of the Chilean Computer Science Society

(SCCC), pages 63–66, 2013.
[10] Rishabh Madan and Partha Sarathi Mangipudi. Predicting computer

network traffic: A time series forecasting approach using dwt, arima
and rnn. In 2018 Eleventh International Conference on Contemporary

Computing (IC3), pages 1–5, 2018.


